已知函數(shù)
(
為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當
時,若
對任意的
恒成立,求實數(shù)
的值;
(Ⅲ)求證:
.
(Ⅰ)
時,
單調(diào)遞增區(qū)間為
;
時,
單調(diào)遞減區(qū)間為
,
單調(diào)遞增區(qū)間為
;(Ⅱ)
;(Ⅲ)證明見解析
解析試題分析:(Ⅰ)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,根據(jù)
和
分類討論得出函數(shù)的單調(diào)區(qū)間;(Ⅱ)先由(Ⅰ)中
時的單調(diào)性可知
,即
,構(gòu)造函數(shù)
,由導(dǎo)函數(shù)分析可得
在
上增,在
上遞減,則
,由
對任意的
恒成立,故
,得
;(Ⅲ)先由(Ⅱ)
,即![]()
,從而問題等價轉(zhuǎn)化為證
.
試題解析:(Ⅰ)
1分
時,
,
在
上單調(diào)遞增。 2分
時,
時,
,
單調(diào)遞減,
時,
,
單調(diào)遞增. 4分
(Ⅱ)由(Ⅰ),
時,![]()
5分
即
,記
![]()
在
上增,在
上遞減![]()
故
,得
8分
(Ⅲ)由(Ⅱ)
,即![]()
,則
時,![]()
要證原不等式成立,只需證:
,即證:![]()
下證
① 9分![]()
![]()
![]()
![]()
①中令
,各式相加,得![]()
![]()
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
.
(1)如果
存在零點,求
的取值范圍
(2)是否存在常數(shù)
,使
為奇函數(shù)?如果存在,求
的值,如果不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)
,其對應(yīng)的圖像為曲線C;若曲線C過
,且在
點處的切斜線率![]()
(1)求函數(shù)
的解析式
(2)證明不等式
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)
,其中a為正實數(shù).
(l)若x=0是函數(shù)
的極值點,討論函數(shù)
的單調(diào)性;
(2)若
在
上無最小值,且
在
上是單調(diào)增函數(shù),求a的取值范
圍;并由此判斷曲線
與曲線
在
交點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)![]()
(1)當
時,求函數(shù)
的單調(diào)區(qū)間;
(2)當函數(shù)自變量的取值區(qū)間與對應(yīng)函數(shù)值的取值區(qū)間相同時,這樣的區(qū)間稱為函數(shù)的保值區(qū)間。設(shè)
,試問函數(shù)
在
上是否存在保值區(qū)間?若存在,請求出一個保值區(qū)間;若不存在,請說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com