【題目】已知函數(shù)f(x),當(dāng)x,y∈R時,恒有f(x+y)=f(x)+f(y).當(dāng)x>0時,f(x)>0
(1)求證:f(x)是奇函數(shù);
(2)若
, 試求f(x)在區(qū)間[﹣2,6]上的最值;
【答案】解:(1)令x=0,y=0,則f(0)=2f(0),
∴f(0)=0.令y=﹣x,則f(0)=f(x)+f(﹣x),
∴f(x)=f(﹣x),即f(x)為奇函數(shù);
(2)任取x1 , x2∈R,且x1<x2
∵f(x+y)=f(x)+f(y),
∴f(x2)﹣f(x1)=f(x2﹣x1),
∵當(dāng)x>0時,f(x)>0,且x1<x2 ,
∴f(x2﹣x1)>0,
即f(x2)>f(x1),
∴f(x)為增函數(shù),
∴當(dāng)x=﹣2時,函數(shù)有最小值,f(x)min=f(﹣2)=﹣f(2)=﹣2f(1)=﹣1.
當(dāng)x=6時,函數(shù)有最大值,f(x)max=f(6)=6f(1)=3
【解析】(1)在給出的等式中取x=y=0,求得f(0)=0,再取y=﹣x可證明f(x)是奇函數(shù);
(2)利用函數(shù)單調(diào)性的定義,借助于已知等式證明函數(shù)f(x)為增函數(shù),從而求出函數(shù)在給定區(qū)間上的最值;
【考點(diǎn)精析】利用函數(shù)的奇偶性和指、對數(shù)不等式的解法對題目進(jìn)行判斷即可得到答案,需要熟知偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱;指數(shù)不等式的解法規(guī)律:根據(jù)指數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化;對數(shù)不等式的解法規(guī)律:根據(jù)對數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
滿足
,
,其中
.
(1)設(shè)
,求證:數(shù)列
是等差數(shù)列,并求出
的通項公式;
(2)設(shè)
,數(shù)列
的前
項和為
,是否存在正整數(shù)
,使得
對于
恒成立,若存在,求出
的最小值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面四邊形ABCD中,△BCD是正三角形,AB=AD=1,∠BAD=θ.
(Ⅰ)將四邊形ABCD的面積S表示成關(guān)于θ的函數(shù);
(Ⅱ)求S的最大值及此時θ的值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,則當(dāng)
時,討論
單調(diào)性;
(2)若
,且當(dāng)
時,不等式
在區(qū)間
上有解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,平面
平面
,
,
是等邊三角形,已知
,
.
![]()
(1)設(shè)
是
上的一點(diǎn),證明:平面
平面
;
(2)求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
為等比數(shù)列,
,公比
,且
成等差數(shù)列.
(1)求數(shù)列
的通項公式;
(2)設(shè)
,
,求使
的
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】猜商品的價格游戲, 觀眾甲:
主持人:高了! 觀眾甲:
主持人:低了! 觀眾甲:
主持人:高了! 觀眾甲:
主持人:低了! 觀眾甲:
主持人:低了! 則此商品價格所在的區(qū)間是 ( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)
的定義域為
,對給定的正數(shù)
,若存在閉區(qū)間
,使得函數(shù)
滿足:①
在
內(nèi)是單調(diào)函數(shù);②
在
上的值域為
,則稱區(qū)間
為
的
級“理想?yún)^(qū)間”.下列結(jié)論錯誤的是( )
A. 函數(shù)
(
)存在1級“理想?yún)^(qū)間”
B. 函數(shù)
(
)不存在2級“理想?yún)^(qū)間”
C. 函數(shù)
(
)存在3級“理想?yún)^(qū)間”
D. 函數(shù)
,
不存在4級“理想?yún)^(qū)間”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示:湖面上甲、乙、丙三艘船沿著同一條直線航行,某一時刻,甲船在最前面的
點(diǎn)處,乙船在中間
點(diǎn)處,丙船在最后面的
點(diǎn)處,且
.一架無人機(jī)在空中的
點(diǎn)處對它們進(jìn)行數(shù)據(jù)測量,在同一時刻測得
,
.(船只與無人機(jī)的大小及其它因素忽略不計)
![]()
(1)求此時無人機(jī)到甲、丙兩船的距離之比;
(2)若此時甲、乙兩船相距100米,求無人機(jī)到丙船的距離.(精確到1米)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com