欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

9.已知直線l:y=kx+m(m為常數(shù))和雙曲線$\frac{x^2}{9}-\frac{y^2}{4}$=1恒有兩個(gè)公共點(diǎn),則斜率k的取值范圍為(-$\frac{2}{3}$,$\frac{2}{3}$).

分析 法一、由題意畫出圖形,求出雙曲線的漸近線方程,結(jié)合對(duì)任意實(shí)數(shù)m,直線l:y=kx+m(m為常數(shù))和雙曲線$\frac{x^2}{9}-\frac{y^2}{4}$=1恒有兩個(gè)公共點(diǎn)即可得到k的取值范圍;
法二、聯(lián)立直線方程和雙曲線方程,由二次項(xiàng)系數(shù)不為0,且判別式大于0恒成立即可求得k的范圍.

解答 解:法一、由雙曲線$\frac{x^2}{9}-\frac{y^2}{4}$=1,得a2=9,b2=4,∴a=3,b=2.
∴雙曲線的漸近線方程為y=$±\frac{2}{3}x$,
如圖,

∵直線l:y=kx+m(m為常數(shù))和雙曲線$\frac{x^2}{9}-\frac{y^2}{4}$=1恒有兩個(gè)公共點(diǎn),
∴$-\frac{2}{3}$<k<$\frac{2}{3}$.
法二、聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{9}-\frac{{y}^{2}}{4}=1}\end{array}\right.$,得(4-9k2)x2-18kmx-9m2-36=0.
∴$\left\{\begin{array}{l}{4-9{k}^{2}≠0}\\{△=324{k}^{2}{m}^{2}+(16-36{k}^{2})(9{m}^{2}+36)>0}\end{array}\right.$,
即$\left\{\begin{array}{l}{k≠±\frac{2}{3}}\\{3{6}^{2}•{k}^{2}<144{m}^{2}+16×36}\end{array}\right.$,∴$-\frac{2}{3}<k<\frac{2}{3}$.
故答案為:(-$\frac{2}{3}$,$\frac{2}{3}$).

點(diǎn)評(píng) 本題考查直線與雙曲線的位置關(guān)系,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.函數(shù)f(x)=$\left\{\begin{array}{l}{aln(x+1),x≥0}\\{\frac{1}{3}{x}^{3}-ax,x<0}\end{array}\right.$,g(x)=ex-1.
(1)若函數(shù)y=f(x)的圖象在點(diǎn)(1,f(1))與點(diǎn)(-1,f(-1))處的切線相互垂直,求a的值;
(2)當(dāng)a>0時(shí),討論函數(shù)f(x)與g(x)的圖象公共點(diǎn)的個(gè)數(shù);
(3)設(shè)數(shù)列${b_n}={e^{\frac{1}{n}}}({n∈N{^*}})$,其前n項(xiàng)和為Sn,證明:Sn>ln(n+1)+n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)命題p:關(guān)于x的一元二次不等式 ax2-x+$\frac{1}{16}$a>0的解集為R,命題q:方程$\frac{{x}^{2}}{15-a}-\frac{{y}^{2}}{a}$=1表示焦點(diǎn)在x軸上的雙曲線.
(1)如果p是真命題,求實(shí)數(shù)a的取值范圍;
(2)如果命題“p或q”為真命題,且“p且q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.命題“?x0∈(0,+∞),lnx0>3-x0”的否定是( 。
A.“?x0∈(0,+∞),lnx0≤3-x0B.?x∈(0,+∞),lnx>3-x
C.?x∈(0,+∞),lnx<3-xD.?x∈(0,+∞),lnx≤3-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知二次函數(shù)f(x)=ax2+x+1,a∈R,a≠0).
(1)若不等式f(x)>0的解集為$(-\frac{1}{3},\frac{1}{2})$,求實(shí)數(shù)a的值;
(2)當(dāng)a∈[-2,0]時(shí),不等式f(x)>0恒成立,求實(shí)數(shù)x的取值范圍;
(3)對(duì)x∈[0,2]時(shí),不等式f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.函數(shù)f(x)=Asin(ωx+φ)(其中A>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,把函數(shù)f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位,得到函數(shù)y=g(x)的圖象.
(1)求y=g(x)得解析式,
(2)若直線y=m與函數(shù)g(x)圖象在$x∈[0,\frac{π}{2}]$時(shí)有兩個(gè)公共點(diǎn),其橫坐標(biāo)分別為x1,x2,求g(x1+x2)的值;
(3)已知△ABC內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且c=3,g(C)=1.若向量$\overrightarrow m=(1,sinA)$與$\overrightarrow n=(2,sinB)$共線,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{2^x}{{{4^x}+1}}$.
(1)求$f({log_{\sqrt{2}}}3)$;
(2)證明函數(shù)f(x)在(0,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.某臺(tái)風(fēng)中心位于A港口東南方向的B處,且臺(tái)風(fēng)中心與A港口的距離為400$\sqrt{2}$千米.預(yù)計(jì)臺(tái)風(fēng)中心將以每小時(shí)40千米的速度向正北方向移動(dòng),離臺(tái)風(fēng)中心500千米的范圍都會(huì)受到臺(tái)風(fēng)影響,則A港口從受到臺(tái)風(fēng)影響到影響結(jié)束,將持續(xù)15小時(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,在平行四邊形ABCD中,F(xiàn)是BC邊的中點(diǎn),AF交BD于E,若$\overrightarrow{BE}=λ\overrightarrow{ED}$,則λ=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案