【題目】2020年寒假是特殊的寒假,因為抗擊疫情全體學生只能在家進行網(wǎng)上在線學習,為了研究學生在網(wǎng)上學習的情況,某學校在網(wǎng)上隨機抽取120名學生對線上教育進行調(diào)查,其中男生與女生的人數(shù)之比為11∶13,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.
(1)完成
列聯(lián)表,并回答能否有99%的把握認為對“線上教育是否滿意與性別有關(guān)”;
滿意 | 不滿意 | 總計 | |
男生 | 30 | ||
女生 | 15 | ||
合計 | 120 |
(2)從被調(diào)查的對線上教育滿意的學生中,利用分層抽樣抽取8名學生,再在8名學生中抽取3名學生,作線上學習的經(jīng)驗介紹,其中抽取男生的個數(shù)為
,求出
的分布列及期望值.
參考公式:附:![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 0.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10828 |
【答案】(1)表格見解析,有99%的把握認為對“線上教育是否滿意與性別有關(guān)”;(2)分布列見解析,![]()
【解析】
(1)根據(jù)男生與女生的人數(shù)之比為11∶13,以及總?cè)藬?shù)120,可求出男,女生總?cè)藬?shù),即可完成
列聯(lián)表,并根據(jù)獨立性檢驗的基本思想,求出
的觀測值,對照臨界值表,即可判斷是否有把握;
(2)根據(jù)(1)可知,男生抽3人,女生抽5人,于是,離散型隨機變量 的可能取值為
,并且服從超幾何分布,即可利用公式
(
),求出各概率,得到分布列,求出期望
(1)因為男生人數(shù)為:
,所以女生人數(shù)為
,
于是可完成
列聯(lián)表,如下:
滿意 | 不滿意 | 總計 | |
男生 | 30 | 25 | 55 |
女生 | 50 | 15 | 65 |
合計 | 80 | 40 | 120 |
根據(jù)列聯(lián)表中的數(shù)據(jù),得到
的觀測值
,
所以有99%的把握認為對“線上教育是否滿意與性別有關(guān)”.
(2)由(1)可知男生抽3人,女生抽5人,
依題可知
的可能取值為
,并且
服從超幾何分布,
(
),即
,
,
,
.
可得分布列為
| 0 | 1 | 2 | 3 |
|
|
|
|
|
可得
.
科目:高中數(shù)學 來源: 題型:
【題目】正方體
中,
,
分別為棱
和
的中點,則下列說正確的是( )
A.
平面
B.
平面![]()
C.異面直線
與
所成角為90°D.平面
截正方體所得截面為等腰梯形
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PA⊥底面ABCD,PA=AD.M,N分別是AB,PC的中點.
![]()
(1)求證:MN//平面PAD;
(2)求證:MN⊥平面PCD;
(3)求二面角B—PC—D的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下幾個命題中:
①線性回歸直線方程
恒過樣本中心
;
②用相關(guān)指數(shù)
可以刻畫回歸的效果,值越小說明模型的擬合效果越好;
③隨機誤差是引起預報值
和真實值
之間存在誤差的原因之一,其大小取決于隨機誤差的方差;
④在含有一個解釋變量的線性模型中,相關(guān)指數(shù)
等于相關(guān)系數(shù)
的平方.
其中真命題為 _________
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某媒體為調(diào)查喜愛娛樂節(jié)目A是否與觀眾性別有關(guān),隨機抽取了30名男性和30名女性觀眾,抽查結(jié)果用等高條形圖表示如圖:
![]()
根據(jù)該等高條形圖,完成下列2×2列聯(lián)表,并用獨立性檢驗的方法分析,能否在犯錯誤的概率不超過0.05的前提下認為喜歡娛樂節(jié)目A與觀眾性別有關(guān)?
喜歡節(jié)目A | 不喜歡節(jié)目A | 總計 | |
男性觀眾 | |||
女性觀眾 | |||
總計 | 60 |
附:![]()
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,正三角形PAC所在平面與等腰三角形ABC所在平面互相垂直,AB=BC,O是AC中點,OH⊥PC于H.
![]()
(1)證明:PC⊥平面BOH;
(2)若
,求二面角A-BH-O的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額
(單位:億元)的折線圖.則下列結(jié)論中表述不正確的是( )
![]()
A. 從2000年至2016年,該地區(qū)環(huán)境基礎(chǔ)設(shè)施投資額逐年增加;
B. 2011年該地區(qū)環(huán)境基礎(chǔ)設(shè)施的投資額比2000年至2004年的投資總額還多;
C. 2012年該地區(qū)基礎(chǔ)設(shè)施的投資額比2004年的投資額翻了兩番 ;
D. 為了預測該地區(qū)2019年的環(huán)境基礎(chǔ)設(shè)施投資額,根據(jù)2010年至2016年的數(shù)據(jù)(時間變量t的值依次為
)建立了投資額y與時間變量t的線性回歸模型
,根據(jù)該模型預測該地區(qū)2019的環(huán)境基礎(chǔ)設(shè)施投資額為256.5億元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐
中,底面
為菱形,
平面
,
,
,
,
分別是
,
的中點.
![]()
(1)求證:
;
(2)設(shè)
為線段
上的動點,若線段
長的最小值為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ) 求曲線
相鄰兩個對稱中心之間的距離;
(Ⅱ) 若函數(shù)
在
,
上單調(diào)遞增, 求
的最大值 .
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com