設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,已知an + 1 = 2Sn + 2 (n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)在an與an + 1之間插入n個(gè)數(shù),使這n + 2個(gè)數(shù)組成一個(gè)公差為dn的等差數(shù)列.
①在數(shù)列{dn}中是否存在三項(xiàng)dm,dk,dp (其中m,k,p成等差數(shù)列)成等比數(shù)列?若存在,求出這樣的三項(xiàng),若不存在,說明理由;
②求證:
.
(1)
(2)不存在(證明見解析) (3)證明見解析
解析試題分析:(1)利用
和等比數(shù)列的定義即可得出;
(2)利用等差數(shù)列的通向公式即可得出;
①假設(shè)在數(shù)列
中存在三項(xiàng)
(其中
是等差數(shù)列)成等比數(shù)列,利用等差數(shù)列和等比數(shù)列的定義及其反證法即可得出;
②利用(2)的結(jié)論、“錯(cuò)位相減法”和等比數(shù)列的前
和公式即可得出.
試題解析:(1)解:由
,得:![]()
![]()
兩式相減:![]()
![]()
∵數(shù)列
是等比數(shù)列,∴
,故![]()
因此
.
(2)解:由題意
,即
,故![]()
①假設(shè)在數(shù)列
中存在三項(xiàng)
(其中
是等差數(shù)列)成等比數(shù)列
則
,即:
(*)
∵
成等差數(shù)列,∴![]()
(*)可以化為
,故
,這與題設(shè)矛盾
∴在數(shù)列
中不存在三項(xiàng)
(其中
是等差數(shù)列)成等比數(shù)列.
②令![]()
則![]()
兩式相減得:![]()
![]()
∴
.
考點(diǎn):等差數(shù)列和等比數(shù)列的性質(zhì);錯(cuò)位相減法求和.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列
滿足
,令
.
(1)試判斷數(shù)列
是否為等差數(shù)列?并說明理由;
(2)若
,求
前
項(xiàng)的和
;
(3)是否存在
使得
三數(shù)成等比數(shù)列?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)各項(xiàng)均為正數(shù)的數(shù)列
的前
項(xiàng)和為
,滿足
且
構(gòu)成等比數(shù)列.(1) 證明:
;(2) 求數(shù)列
的通項(xiàng)公式;(3) 證明:對(duì)一切正整數(shù)
,有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
中,
,前
項(xiàng)和
.
(1) 求數(shù)列
的通項(xiàng)公式;
(2) 設(shè)數(shù)列
的前
項(xiàng)和為
,是否存在實(shí)數(shù)
,使得
對(duì)一切正整數(shù)
都
成立?若存在,求出
的最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等比數(shù)列
( n∈N*)中a1>1,公比q>0,設(shè)bn=log2an,且b1+b3+b5=6,b1·b3·b5=0.
(1)求證:數(shù)列
是等差數(shù)列;
(2)求
前n項(xiàng)和Sn及
通項(xiàng)an.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=1,S11=33.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)
,求證:數(shù)列{bn}是等比數(shù)列,并求其前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列
的前
項(xiàng)和為
,且
,數(shù)列
為等差數(shù)列,且
,
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)若對(duì)任意的
,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
的首項(xiàng)
,且對(duì)任意
都有
(其中
為常數(shù)).
(1)若數(shù)列
為等差數(shù)列,且
,求
的通項(xiàng)公式.
(2)若數(shù)列
是等比數(shù)列,且
,從數(shù)列
中任意取出相鄰的三項(xiàng),均能按某種順序排成等差數(shù)列,求
的前
項(xiàng)和
成立的
的取值的集合.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com