【題目】如圖,四棱錐
的底面
是平行四邊形,側(cè)面
是邊長為2的正三角形,
,
.
![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)設(shè)
是棱
上的點,當
平面
時,求二面角
的余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分別是A1C1,BC的中點.
![]()
(1)證明:平面AEB⊥平面BB1C1C;
(2)證明:C1F∥平面ABE;
(3)設(shè)P是BE的中點,求三棱錐P B1C1F的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓錐曲線
:
(
為參數(shù))和定點
,
,
是此圓錐曲線
的左、右焦點.
(1)以原點為極點,以
軸的正半軸為極軸建立極坐標系,求直線
的極坐標方程;
(2)經(jīng)過
且與直線
垂直的直線交此圓錐曲線
于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,
,其中a∈R.
(Ⅰ)當a=1時,判斷f(x)的單調(diào)性;
(Ⅱ)若g(x)在其定義域內(nèi)為增函數(shù),求正實數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點E在線段AC上,CE=4,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連接AB,BE,如圖②所示,設(shè)點F是AB的中點.
(1)求證:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G為AC上一點,求三棱錐B-DEG的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,D,E,F分別為PC,AC,AB的中點.已知PA⊥AC,PA=6,BC=8,DF=5.
求證:(1)直線PA∥平面DEF;
(2)平面BDE⊥平面ABC.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個幾何體的正視圖和側(cè)視圖都是邊長為1的正方形,且體積為
,則這個幾何體的俯視圖可能是下列圖形中的________.(填入所有可能的圖形前的編號)
①銳角三角形;②直角三角形;③鈍角三角形;④四邊形;⑤扇形;⑥圓.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,求
的單調(diào)區(qū)間;
(2)若關(guān)于
的不等式
對一切
恒成立,求實數(shù)
的取值范圍;
(3)求證:對
,都有
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給定橢圓
,稱圓
為橢圓
的“伴隨圓”.已知點
是橢圓
上的點
(1)若過點
的直線
與橢圓
有且只有一個公共點,求
被橢圓
的伴隨圓
所截得的弦長:
(2)
是橢圓
上的兩點,設(shè)
是直線
的斜率,且滿足
,試問:直線
是否過定點,如果過定點,求出定點坐標,如果不過定點,試說明理由。
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com