【題目】已知在四棱錐
中,底面
是邊長(zhǎng)為
的正方形,
是正三角形,CD平面PAD,E,F,G,O分別是PC,PD,BC,AD 的中點(diǎn).
![]()
(Ⅰ)求證:PO平面
;
(Ⅱ)求平面EFG與平面
所成銳二面角的大小;
(Ⅲ)線段
上是否存在點(diǎn)
,使得直線
與平面
所成角為
,若存在,求線段
的長(zhǎng)度;若不存在,說明理由.
【答案】(Ⅰ)證明見解析 (Ⅱ)
(Ⅲ)不存在,見解析
【解析】
(Ⅰ)正三角形
中![]()
,由
平面
得到![]()
,所以得到
面
;(Ⅱ)以
點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系,根據(jù)平面
的法向量,和平面
的法向量,從而得到平面
與平面
所成銳二面角的余弦值,再得到所求的角;(Ⅲ)線段
上存在滿足題意的點(diǎn)
,直線
與平面
法向量的夾角為
,設(shè)
,
,利用向量的夾角公式,得到關(guān)于
的方程,證明方程無解,從而得到不存在滿足要求的點(diǎn)
.
(Ⅰ)證明:因?yàn)椤?/span>
是正三角形,
是
的中點(diǎn),
所以 ![]()
.
又因?yàn)?/span>
平面
,
平面
,
所以![]()
.
,
平面
,
所以
面
.
(Ⅱ)如圖,以
點(diǎn)為原點(diǎn)分別以
、
、
所在直線為
軸、
軸、
軸建立空間直角坐標(biāo)系.
![]()
則
,
,
,
設(shè)平面
的法向量為![]()
所以
,即![]()
令
,則
,
又平面
的法向量
,
設(shè)平面
與平面
所成銳二面角為
,
所以
.
所以平面
與平面
所成銳二面角為
.
(Ⅲ)假設(shè)線段
上存在點(diǎn)
,
使得直線
與平面
所成角為
,
即直線
與平面
法向量
所成的角為
,
設(shè)
,
,
,
所以![]()
所以
,
整理得
,
,方程無解,
所以,不存在這樣的點(diǎn)
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)《環(huán)境空氣質(zhì)量指數(shù)
技術(shù)規(guī)定(試行)》規(guī)定:空氣質(zhì)量指數(shù)在區(qū)間
、
、
、
、
、
時(shí),其對(duì)應(yīng)的空氣質(zhì)量狀況分別為優(yōu)、良、輕度污染、中度污染、重度污染、嚴(yán)重污染.如圖為某市2019年10月1日至10月7日的空氣質(zhì)量指數(shù)
直方圖,在這7天內(nèi),下列結(jié)論正確的是( )
![]()
A.前4天
的方差小于后3天
的方差
B.這7天內(nèi)空氣質(zhì)量狀況為嚴(yán)重污染的天數(shù)為3
C.這7天的平均空氣質(zhì)量狀況為良
D.空氣質(zhì)量狀況為優(yōu)或良的概率為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)分別為
,
,離心率為
,過
作直線
與橢圓
交于
,
兩點(diǎn),
的周長(zhǎng)為8.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)問:
的內(nèi)切圓面積是否有最大值?若有,試求出最大值;若沒有,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(選修4-4:坐標(biāo)系與參數(shù)方程)
在直角坐標(biāo)系
中,半圓C的參數(shù)方程為
(
為參數(shù),
),以O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求C的極坐標(biāo)方程;
(Ⅱ)直線
的極坐標(biāo)方程是
,射線OM:
與半圓C的交點(diǎn)為O、P,與直線
的交點(diǎn)為Q,求線段PQ的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2|x+1|+|x-2|.
(1)求f(x)的最小值m;
(2)若a,b,c均為正實(shí)數(shù),且滿足a+b+c=m,求證:
+
+
≥3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班主任對(duì)全班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
積極參加 班級(jí)工作 | 不太主動(dòng)參加 班級(jí)工作 | 合計(jì) | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
合計(jì) | 24 | 26 | 50 |
(1)如果隨機(jī)抽查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法能否有99.9%的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度有關(guān)系?并說明理由.(參考下表)
P(K2 ≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:
,其中
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“挑戰(zhàn)不可能”的電視節(jié)目上,甲、乙、丙三個(gè)人組成的解密團(tuán)隊(duì)參加一項(xiàng)解密挑戰(zhàn)活動(dòng),規(guī)則是由密碼專家給出題目,然后由
個(gè)人依次出場(chǎng)解密,每人限定時(shí)間是
分鐘內(nèi),否則派下一個(gè)人.
個(gè)人中只要有一人解密正確,則認(rèn)為該團(tuán)隊(duì)挑戰(zhàn)成功,否則挑戰(zhàn)失敗.根據(jù)甲以往解密測(cè)試情況,抽取了甲
次的測(cè)試記錄,繪制了如下的頻率分布直方圖.
![]()
(1)若甲解密成功所需時(shí)間的中位數(shù)為
,求
、
的值,并求出甲在
分鐘內(nèi)解密成功的頻率;
(2)在“挑戰(zhàn)不可能”節(jié)目上由于來自各方及自身的心理壓力,甲,乙,丙解密成功的概率分別為
,其中
表示第
個(gè)出場(chǎng)選手解密成功的概率,并且
定義為甲抽樣中解密成功的頻率代替,各人是否解密成功相互獨(dú)立.
①求該團(tuán)隊(duì)挑戰(zhàn)成功的概率;
②該團(tuán)隊(duì)以
從小到大的順序按排甲、乙、丙三個(gè)人上場(chǎng)解密,求團(tuán)隊(duì)挑戰(zhàn)成功所需派出的人員數(shù)目
的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠的檢驗(yàn)員為了檢測(cè)生產(chǎn)線上生產(chǎn)零件的情況,從產(chǎn)品中隨機(jī)抽取了
個(gè)進(jìn)行測(cè)量,根據(jù)所測(cè)量的數(shù)據(jù)畫出頻率分布直方圖如下:
![]()
如果:尺寸數(shù)據(jù)在
內(nèi)的零件為合格品,頻率作為概率.
(1)從產(chǎn)品中隨機(jī)抽取
件,合格品的個(gè)數(shù)為
,求
的分布列與期望:
(2)為了提高產(chǎn)品合格率,現(xiàn)提出
,
兩種不同的改進(jìn)方案進(jìn)行試驗(yàn),若按
方案進(jìn)行試驗(yàn)后,隨機(jī)抽取
件產(chǎn)品,不合格個(gè)數(shù)的期望是
:若按
方案試驗(yàn)后,抽取
件產(chǎn)品,不合格個(gè)數(shù)的期望是
,你會(huì)選擇哪個(gè)改進(jìn)方案?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左焦點(diǎn)為
,點(diǎn)
為橢圓的左、右頂點(diǎn),點(diǎn)
是橢圓上一點(diǎn),且直線
的傾斜角為
,
,已知橢圓的離心率為
.
![]()
(1)求橢圓
的方程;
(2)設(shè)
為橢圓上異于
的兩點(diǎn),若直線
的斜率等于直線
斜率的
倍,求四邊形
面積的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com