【題目】(選修4-4:坐標(biāo)系與參數(shù)方程)
在直角坐標(biāo)系
中,半圓C的參數(shù)方程為
(
為參數(shù),
),以O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求C的極坐標(biāo)方程;
(Ⅱ)直線
的極坐標(biāo)方程是
,射線OM:
與半圓C的交點(diǎn)為O、P,與直線
的交點(diǎn)為Q,求線段PQ的長.
【答案】(1)
;(2)4.
【解析】
試題本題主要考查極坐標(biāo)方程與直角坐標(biāo)方程的轉(zhuǎn)化、參數(shù)方程與普通方程的轉(zhuǎn)化等基礎(chǔ)知識,意在考查考生的分析問題解決問題的能力、轉(zhuǎn)化能力、運(yùn)算求解能力.第一問,先利用參數(shù)方程與普通方程的轉(zhuǎn)化公式將圓C的方程轉(zhuǎn)化為普通方程,再利用公式
轉(zhuǎn)化為極坐標(biāo)方程;第二問,利用圓C的極坐標(biāo)方程求出點(diǎn)P的極坐標(biāo),再利用直線
的極坐標(biāo)方程求出點(diǎn)Q的極坐標(biāo),最后利用
計(jì)算即可.
試題解析:(Ⅰ)半圓C的普通方程為
,又
,
所以半圓C的極坐標(biāo)方程是
. (5分)
(Ⅱ)設(shè)
為點(diǎn)P的極坐標(biāo),則有
,解得
,
設(shè)
為點(diǎn)Q的極坐標(biāo),則有
解得
,
由于
,所以
,所以PQ的長為4. (10分)
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司培訓(xùn)員工某項(xiàng)技能,培訓(xùn)有如下兩種方式:
方式一:周一到周五每天培訓(xùn)1小時,周日測試
方式二:周六一天培訓(xùn)4小時,周日測試
公司有多個班組,每個班組60人,現(xiàn)任選兩組
記為甲組、乙組
先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測試達(dá)標(biāo)的人數(shù)如表:
第一周 | 第二周 | 第三周 | 第四周 | |
甲組 | 20 | 25 | 10 | 5 |
乙組 | 8 | 16 | 20 | 16 |
用方式一與方式二進(jìn)行培訓(xùn),分別估計(jì)員工受訓(xùn)的平均時間
精確到
,并據(jù)此判斷哪種培訓(xùn)方式效率更高?
在甲乙兩組中,從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機(jī)抽取2人,求這2人中至少有1人來自甲組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的圖象關(guān)于直線
對稱,則( )
A.函數(shù)
為奇函數(shù)
B.函數(shù)
在
上單調(diào)遞增
C.若
,則
的最小值為![]()
D.函數(shù)
的圖象向右平移
個單位長度得到函數(shù)
的圖象
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,卷一《方田》中有如下兩個問題:
[三三]今有宛田,下周三十步,徑十六步.問為田幾何?
[三四]又有宛田,下周九十九步,徑五十一步.問為田幾何?
翻譯為:[三三]現(xiàn)有扇形田,弧長30步,直徑長16步.問這塊田面積是多少?
[三四]又有一扇形田,弧長99步,直徑長51步.問這塊田面積是多少?
則下列說法正確的是( )
A.問題[三三]中扇形的面積為240平方步B.問題[三四]中扇形的面積為
平方步
C.問題[三三]中扇形的面積為60平方步D.問題[三四]中扇形的面積為
平方步
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),曲線
的參數(shù)方程為
(
為參數(shù)),曲線
與
軸交于
兩點(diǎn).以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系.
(1)求直線
的普通方程及曲線
的極坐標(biāo)方程;
(2)若直線
與曲線
在第一象限交于點(diǎn)
,且線段
的中點(diǎn)為
,點(diǎn)
在曲線
上,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(Ⅰ) 求曲線
在點(diǎn)
處的切線方程;
(Ⅱ) 討論函數(shù)
的單調(diào)性;
(Ⅲ) 設(shè)
,當(dāng)
時,若對任意的
,存在
,使得
≥
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四棱錐
中,底面
是邊長為
的正方形,
是正三角形,CD平面PAD,E,F,G,O分別是PC,PD,BC,AD 的中點(diǎn).
![]()
(Ⅰ)求證:PO平面
;
(Ⅱ)求平面EFG與平面
所成銳二面角的大小;
(Ⅲ)線段
上是否存在點(diǎn)
,使得直線
與平面
所成角為
,若存在,求線段
的長度;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)當(dāng)
時,求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)討論函數(shù)
的單調(diào)性;
(Ⅲ)對于任意
,
,都有
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,
是邊長為1的正三角形,點(diǎn)P在
所在的平面內(nèi),且
(a為常數(shù)),下列結(jié)論中正確的是( )
![]()
A.當(dāng)
時,滿足條件的點(diǎn)P有且只有一個
B.當(dāng)
時,滿足條件的點(diǎn)P有三個
C.當(dāng)
時,滿足條件的點(diǎn)P有無數(shù)個
D.當(dāng)a為任意正實(shí)數(shù)時,滿足條件的點(diǎn)總是有限個
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com