【題目】已知函數(shù)
(
).
(I)若
,求曲線
在點(diǎn)
處的切線方程;
(II)若
在
上無極值點(diǎn),求
的值;
(III)當(dāng)
時(shí),討論函數(shù)
的零點(diǎn)個數(shù),并說明理由.
【答案】(1)
; (2)
時(shí)函數(shù)
在
上無零點(diǎn);當(dāng)
時(shí),函數(shù)
在
上有一個零點(diǎn);當(dāng)
時(shí),函數(shù)
在
上有兩個零點(diǎn).
【解析】
(I)由導(dǎo)數(shù)的幾何意義,切線的斜率
,先求
,
,
,利用直線方程的點(diǎn)斜式求解. (II)因?yàn)?/span>
,所以若
在
上無極值點(diǎn),則
,即
,
,解得
.
(III)討論當(dāng)
時(shí),
在
上的符號, 函數(shù)
的單調(diào)性、極值情況,從而分析
函數(shù)
的圖像與x軸的交點(diǎn)個數(shù),得出函數(shù)
的零點(diǎn)個數(shù).
(I)當(dāng)
時(shí),
,
,
,
,
所以曲線
在點(diǎn)
處的切線方程為
.
(II)
,
,依題意有
,即
,
,解得
.
(III)(1)
時(shí),函數(shù)
在
上恒為增函數(shù)且
,函數(shù)
在
上無零點(diǎn).
(2)
時(shí):
當(dāng)
,
,函數(shù)
為增函數(shù);
當(dāng)
,
,函數(shù)
為減函數(shù);
當(dāng)
,
,函數(shù)
為增函數(shù).
由于
,此時(shí)只需判定
的符號:
當(dāng)
時(shí),函數(shù)
在
上無零點(diǎn);
當(dāng)
時(shí),函數(shù)
在
上有一個零點(diǎn);
當(dāng)
時(shí),函數(shù)
在
上有兩個零點(diǎn).
綜上,
時(shí)函數(shù)
在
上無零點(diǎn);
當(dāng)
時(shí),函數(shù)
在
上有一個零點(diǎn);
當(dāng)
時(shí),函數(shù)
在
上有兩個零點(diǎn).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sinx﹣xcosx﹣x,f'(x)為f(x)的導(dǎo)數(shù).
(1)求曲線
在點(diǎn)A(0,f(0))處的切線方程;
(2)設(shè)
,求
在區(qū)間[0,π]上的最大值和最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知遞增的等差數(shù)列
的前
項(xiàng)和為
,若
,
,
成等比數(shù)列,且
.
(1)求數(shù)列
的通項(xiàng)公式及前
項(xiàng)和
;
(2)設(shè)
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在R上的偶函數(shù)
滿足
,且
時(shí),
,則函數(shù)
的零點(diǎn)個數(shù)是( )
A. 6個B. 8個C. 2個D. 4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了選拔學(xué)生參加“XX市中學(xué)生知識競賽”,先在本校進(jìn)行選拔測試,若該校有100名學(xué)生參加選拔測試,并根據(jù)選拔測試成績作出如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估算這100名學(xué)生參加選拔測試的平均成績;
(2)該校推薦選拔測試成績在110以上的學(xué)生代表學(xué)校參加市知識競賽,為了了解情況,在該校推薦參加市知識競賽的學(xué)生中隨機(jī)抽取2人,求選取的兩人的選拔成績在頻率分布直方圖中處于不同組的概率.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,求曲線
在點(diǎn)
處的切線方程;
(2)若函數(shù)
在其定義域內(nèi)為增函數(shù),求
的取值范圍;
(3)在(2)的條件下,設(shè)函數(shù)
,若在
上至少存在一點(diǎn)
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
為常數(shù).
(1)當(dāng)
時(shí),求函數(shù)
的圖象在點(diǎn)
處的切線方程;
(2)若函數(shù)
有兩個不同的零點(diǎn)
,
,
①當(dāng)
時(shí),求
的最小值;
②當(dāng)
時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有人玩擲均勻硬幣走跳棋的游戲,棋盤上標(biāo)有第0站(出發(fā)地),在第1站,第2站,……,第100站. 一枚棋子開始在出發(fā)地,棋手每擲一次硬幣,這枚棋子向前跳動一次,若擲出正向,棋子向前跳一站,若擲出反面,棋子向前跳兩站,直到棋子跳到第99站(失敗收容地)或跳到第100站(勝利大本營),該游戲結(jié)束. 設(shè)棋子跳到第
站的概率為
.
(1)求
,
,
;
(2)寫出
與
、
的遞推關(guān)系
);
(3)求玩該游戲獲勝的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】P是圓
上的動點(diǎn),P點(diǎn)在x軸上的射影是D,點(diǎn)M滿足
.
![]()
(1)求動點(diǎn)M的軌跡C的方程,并說明軌跡是什么圖形;
(2)過點(diǎn)
的直線l與動點(diǎn)M的軌跡C交于不同的兩點(diǎn)A,B,求以OA,OB為鄰邊的平行四邊形OAEB的頂點(diǎn)E的軌跡方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com