【題目】某公司為了應(yīng)對(duì)金融危機(jī),決定適當(dāng)進(jìn)行裁員,已知這家公司現(xiàn)有職工
人(
,且
為10的整數(shù)倍),每人每年可創(chuàng)利100千元,據(jù)測(cè)算,在經(jīng)營(yíng)條件不變的前的提下,若裁員人數(shù)不超過(guò)現(xiàn)有人數(shù)的30%,則每裁員1人,留崗員工每人每年就能多創(chuàng)利1千元(即若裁員
人,留崗員工可多創(chuàng)利潤(rùn)
千元);若裁員人數(shù)超過(guò)現(xiàn)有人數(shù)的30%,則每裁員1人,留崗員工每人每年就能多創(chuàng)利2千元(即若裁員
人,留崗員工可多創(chuàng)利潤(rùn)
千元),為保證公司的正常運(yùn)轉(zhuǎn),留崗的員工數(shù)不得少于現(xiàn)有員工人數(shù)的50%,為了保障被裁員工的生活,公司要付給被裁員工每人每年20千元的生活費(fèi).
(1)設(shè)公司裁員人數(shù)為
,寫(xiě)出公司獲得的經(jīng)濟(jì)效益
(千元)關(guān)于
的函數(shù)(經(jīng)濟(jì)效益=在職人員創(chuàng)利總額—被裁員工生活費(fèi));
(2)為了獲得最大的經(jīng)濟(jì)效益,該公司應(yīng)裁員多少人?
【答案】(1)
;(2)
.
【解析】
(1)根據(jù)題意,欲求獲得最大的經(jīng)濟(jì)效益時(shí),該公司的裁員人數(shù).分情況求出
和
兩種情況下函數(shù)的解析式,列出分段函數(shù);
(2)分別求出兩段段函數(shù)的最大值,然后進(jìn)行比較,最后得出裁員的最佳人數(shù).
(1)設(shè)公司裁員人數(shù)為
,獲得的經(jīng)濟(jì)效益為
千元,
則由題意得當(dāng)
時(shí),
,
當(dāng)
時(shí),
,
所以![]()
(2)當(dāng)
時(shí),對(duì)稱軸
,
①當(dāng)
,即
,
所以
時(shí),
取得最大值為
,
②當(dāng)
時(shí),對(duì)稱軸
,
當(dāng)
,即
,
的取值小于
,
當(dāng)
,即
時(shí),
取得最大值為
,
顯然,
都有
,
當(dāng)
時(shí),
,
綜上所述:當(dāng)
時(shí),
取得最大值,
所以該公司應(yīng)裁員
人.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
的值域?yàn)?/span>
,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列
的前
項(xiàng)1,3,7,
,
(
)組成集合
,從集合
中任取
(
)個(gè)數(shù),其所有可能的
個(gè)數(shù)的乘積的和為
(若只取一個(gè)數(shù),規(guī)定乘積為此數(shù)本身),記
.例如:當(dāng)
時(shí),
,
,
;
時(shí),
,
,
,
.
(1)當(dāng)
時(shí),求
,
,
,
的值;
(2)證明:
時(shí)集合
的
與
時(shí)集合
的
(為以示區(qū)別,用
表示)有關(guān)系式
(
,
);
(3)試求
(用
表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)
千件,需另投入成本
,當(dāng)年產(chǎn)量不足80千件時(shí),
(萬(wàn)元);當(dāng)年產(chǎn)量不小于80千件時(shí),
(萬(wàn)元),每件售價(jià)為0.05萬(wàn)元,通過(guò)市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.
(1)寫(xiě)出年利潤(rùn)
(萬(wàn)元)關(guān)于年產(chǎn)量
(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合
由滿足下列兩個(gè)條件的數(shù)列
構(gòu)成:①
②存在實(shí)數(shù)
使得
對(duì)任意正整數(shù)
都成立.
(1)現(xiàn)在給出只有5項(xiàng)的有限數(shù)列
試判斷數(shù)列
是否為集合
的元素;
(2)設(shè)數(shù)列
的前項(xiàng)和為
且
若對(duì)任意正整數(shù)
點(diǎn)
均在直線
上,證明:數(shù)列
并寫(xiě)出實(shí)數(shù)
的取值范圍;
(3)設(shè)數(shù)列
若數(shù)列
沒(méi)有最大值,求證:數(shù)列
一定是單調(diào)遞增數(shù)列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)F1、F2為雙曲線
(b>0)的左、右焦點(diǎn),過(guò)F2作垂直于x軸的直線,在x軸上方交雙曲線C于點(diǎn)M,且∠MF1F2=30°,圓O的方程是x2+y2=b2.
(1)求雙曲線C的方程;
(2)過(guò)雙曲線C上任意一點(diǎn)P作該雙曲線兩條漸近線的垂線,垂足分別為P1、P2,求
的值;
(3)過(guò)圓O上任意一點(diǎn)Q作圓O的切線l交雙曲線C于A、B兩點(diǎn),AB中點(diǎn)為M,求證:|AB|=2|OM|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】曲線
的右焦點(diǎn)分別為
,短袖長(zhǎng)為
,點(diǎn)
在曲線
上,
直線
上,且
.
![]()
(1)求曲線的標(biāo)準(zhǔn)方程;
(2)試通過(guò)計(jì)算判斷直線
與曲線
公共點(diǎn)的個(gè)數(shù).
(3)若點(diǎn)
在都在以線段
為直徑的圓上,且
,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若正項(xiàng)數(shù)列
滿足:
,則稱此數(shù)列為“比差等數(shù)列”.
(1)試寫(xiě)出一個(gè)“比差等數(shù)列”的前
項(xiàng);
(2)設(shè)數(shù)列
是一個(gè)“比差等數(shù)列”,問(wèn)
是否存在最小值,如存在,求出最小值;如不存在,請(qǐng)說(shuō)明理由;
(3)已知數(shù)列
是一個(gè)“比差等數(shù)列”,
為其前
項(xiàng)的和,試證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)
、
、
,如果存在實(shí)數(shù)
、
使得
,那么稱
為
、
的生成函數(shù).
(1)若
,
,
,則
是否分別為
、
的生成函數(shù)?并說(shuō)明理由;
(2)設(shè)
,
,
,
,生成函數(shù)
,若不等式
在
上有解,求實(shí)數(shù)
的取值范圍;
(3)設(shè)
,
取
,
,生成函數(shù)
圖象的最低點(diǎn)坐標(biāo)為
,若對(duì)于任意正實(shí)數(shù)
、
且
,試問(wèn)是否存在最大的常數(shù)
,使
恒成立?如果存在,求出這個(gè)
的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com