【題目】已知函數(shù)
.
(1)當
時,求不等式
的解集.
(2)討論不等式
的解集.
【答案】(1)
;(2)詳見解析.
【解析】
當
時,
,則由
得
,據(jù)此確定不等式的解集即可;
即
,即不等式的解集為![]()
由題意可得
,若
,不等式的解集可解,
若
,則不等式等價為
,令
,換元后分類討論求解不等式的解集即可.
當
時,
,
由
得
,得
,即
,即不等式的解集為![]()
由
得
,
即
,
若
,則不等式等價為
得
,得
,
若
,則不等式等價為
,
令
,則不等式等價為
,
若
,拋物線
開口向上,有兩個零點2,
,
若
,則
,此時不等式的解為
,即
,得
,
若
,則
,此時不等式
的無解,
若
,則
,此時不等式的解為
,即
,得
,
若
,拋物線
開口向下,有兩個零點2,
,且
,
此時不等式的解為
或
,即
或
,得
或
,
綜上若
,不等式的解集為
或
,
若
,不等式的解集為
,
若
,不等式的解集為
,
若
,不等式的解集為空集,
若
,不等式的解集為![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】說明:請考生在(A)、(B)兩個小題中任選一題作答。
(A)已知函數(shù)
;
(1)求
的零點;
(2)若
有三個零點,求實數(shù)
的取值范圍.
(B)已知函數(shù)![]()
(1)求
的零點;
(2)若
,
有4個零點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校為調(diào)查學(xué)生喜歡“應(yīng)用統(tǒng)計”課程是否與性別有關(guān),隨機抽取了選修課程的60名學(xué)生,得到數(shù)據(jù)如下表:
喜歡統(tǒng)計課程 | 不喜歡統(tǒng)計課程 | 合計 | |
男生 | 20 | 10 | 30 |
女生 | 10 | 20 | 30 |
合計 | 30 | 30 | 60 |
(1)判斷是否有99.5%的把握認為喜歡“應(yīng)用統(tǒng)計”課程與性別有關(guān)?
(2)用分層抽樣的方法從喜歡統(tǒng)計課程的學(xué)生中抽取6名學(xué)生作進一步調(diào)查,將這6名學(xué)生作為一個樣本,從中任選3人,求恰有2個男生和1個女生的概率.
下面的臨界值表供參考:
| 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:
,其中
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
為偶函數(shù),且函數(shù)
圖象的兩相鄰對稱軸間的距離為
.
(1)求
的值;
(2)將函數(shù)
的圖象向右平移
個單位后,再將得到的圖象上各點的橫坐標伸長到原來的
倍,縱坐標不變,得到函數(shù)
的圖象,求
的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣
x2 , g(x)=
x2+x,m∈R,令F(x)=f(x)+g(x). (Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若關(guān)于x的不等式F(x)≤mx﹣1恒成立,求整數(shù)m的最小值;
(Ⅲ)若m=﹣1,且正實數(shù)x1 , x2滿足F(x1)=﹣F(x2),求證:x1+x2
﹣1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:數(shù)列{an}中,
=n,a2=6,n∈N+ .
(1)求a1 , a3 , a4;
(2)猜想an的表達式并給出證明;
(3)記:Sn=
+
+…+
,證明:Sn<
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足 an+2﹣an+1=an+1﹣an , n∈N* , 且a5=
若函數(shù)f(x)=sin2x+2cos2
,記yn=f(an),則數(shù)列{yn}的前9項和為( )
A.O
B.﹣9
C.9
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
為實數(shù),函數(shù)
,
.
(1)求
的單調(diào)區(qū)間與極值;
(2)求證:當
且
時,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣
,g(x)=ax+b.
(1)若函數(shù)h(x)=f(x)﹣g(x)在(0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)若直線g(x)=ax+b是函數(shù)f(x)=lnx﹣
圖象的切線,求a+b的最小值;
(3)當b=0時,若f(x)與g(x)的圖象有兩個交點A(x1 , y1),B(x2 , y2),求證:x1x2>2e2 . (取e為2.8,取ln2為0.7,取
為1.4)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com