【題目】已知數(shù)列
中,
,
,
的前
項(xiàng)和為
,且滿足
(
).
(1)試求數(shù)列
的通項(xiàng)公式;
(2)令
,
是
的前
項(xiàng)和,證明:
;
(3)證明:對(duì)任意給定的
,均存在
,使得
時(shí),(2)中的
恒成立.
【答案】(1)
;(2)證明見解析;(3)證明見解析
【解析】
(1)由題意首先整理所給的遞推關(guān)系式,然后利用累加法即可求得數(shù)列的通項(xiàng)公式;
(2)結(jié)合(1)中的通項(xiàng)公式裂項(xiàng)求和求得數(shù)列
的前
項(xiàng)和即可證得題中的結(jié)論;
(3)首先求解不等式
得到實(shí)數(shù)n的取值范圍,然后結(jié)合所得的結(jié)果給出
的值即可.
(1)由題意知
(n≥3),
即
(n≥3),
![]()
![]()
![]()
![]()
,n≥3.
檢驗(yàn)知n=1,2時(shí),結(jié)論也成立,
故
.
(2) 由于bn=
=
=![]()
故![]()
![]()
,
所以,![]()
.
(3)若Tn>m,其中m∈(0,
),則有
>m,
則2n+1>![]()
,
故
,
取
(其中[x]表示不超過x的最大整數(shù)),
則當(dāng)
時(shí),
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
在
上,以
為切點(diǎn)的
的切線的斜率為
,過
外一點(diǎn)
(不在
軸上)作
的切線
、
,點(diǎn)
、
為切點(diǎn),作平行于
的切線
(切點(diǎn)為
),點(diǎn)
、
分別是與
、
的交點(diǎn)(如圖):
![]()
(1)用
、
的縱坐標(biāo)
、
表示直線
的斜率;
(2)若直線
與
的交點(diǎn)為
,證明
是
的中點(diǎn);
(3)設(shè)三角形
面積為
,若將由過
外一點(diǎn)的兩條切線及第三條切線(平行于兩切線切點(diǎn)的連線)圍成的三角形叫做“切線三角形”,如
,再由
、
作“切線三角形”,并依這樣的方法不斷作切線三角形……,試?yán)?/span>“切線三角形”的面積和計(jì)算由拋物線及
所圍成的陰影部分的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)三口之家,共
個(gè)大人,
個(gè)小孩,約定星期日乘紅色、白色兩輛轎車結(jié)伴郊游,每輛車最多乘坐
人,其中兩個(gè)小孩不能獨(dú)坐一輛車,則不同的乘車方法種數(shù)是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大。
(2)若△ABC的面積S=5
,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),討論函數(shù)
的單調(diào)性;
(2)若不等式
對(duì)于任意
成立,求正實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓
,設(shè)
是橢圓
上任一點(diǎn),從原點(diǎn)
向圓
作兩條切線,切點(diǎn)分別為
.
(1)若直線
互相垂直,且點(diǎn)
在第一象限內(nèi),求點(diǎn)
的坐標(biāo);
(2)若直線
的斜率都存在,并記為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓![]()
的離心率為
,
,
分別是橢圓的左右焦點(diǎn),過點(diǎn)
的直線交橢圓于
,
兩點(diǎn),且
的周長為12.
(Ⅰ)求橢圓
的方程
(Ⅱ)過點(diǎn)
作斜率為
的直線
與橢圓
交于兩點(diǎn)
,
,試判斷在
軸上是否存在點(diǎn)
,使得
是以
為底邊的等腰三角形若存在,求點(diǎn)
橫坐標(biāo)的取值范圍,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,其中
是自然對(duì)數(shù)的底數(shù).
(Ⅰ)
,使得不等式
成立,試求實(shí)數(shù)
的取值范圍;
(Ⅱ)若
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的圖象過點(diǎn)
和點(diǎn)
.
(1)求函數(shù)
的最大值與最小值;
(2)將函數(shù)
的圖象向左平移
個(gè)單位后,得到函數(shù)
的圖象;已知點(diǎn)
,若函數(shù)
的圖象上存在點(diǎn)
,使得
,求函數(shù)
圖象的對(duì)稱中心.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com