【題目】某公司培訓(xùn)員工某項(xiàng)技能,培訓(xùn)有如下兩種方式:
方式一:周一到周五每天培訓(xùn)1小時(shí),周日測試
方式二:周六一天培訓(xùn)4小時(shí),周日測試
公司有多個(gè)班組,每個(gè)班組60人,現(xiàn)任選兩組
記為甲組、乙組
先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測試達(dá)標(biāo)的人數(shù)如表:
第一周 | 第二周 | 第三周 | 第四周 | |
甲組 | 20 | 25 | 10 | 5 |
乙組 | 8 | 16 | 20 | 16 |
用方式一與方式二進(jìn)行培訓(xùn),分別估計(jì)員工受訓(xùn)的平均時(shí)間
精確到
,并據(jù)此判斷哪種培訓(xùn)方式效率更高?
在甲乙兩組中,從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機(jī)抽取2人,求這2人中至少有1人來自甲組的概率.
【答案】(1)方式一(2)![]()
【解析】
(1)用總的受訓(xùn)時(shí)間除以
,得到平均受訓(xùn)時(shí)間.由此判斷出方式一效率更高.(2)利用分層抽樣的知識,計(jì)算得來自甲組
人,乙組
人.再利用列舉法求得“從這
人中隨機(jī)抽取
人,求這
人中至少有
人來自甲組的概率”.
解:(1)設(shè)甲乙兩組員工受訓(xùn)的平均時(shí)間分別為
、
,則
(小時(shí))
(小時(shí))
據(jù)此可估計(jì)用方式一與方式二培訓(xùn),員工受訓(xùn)的平均時(shí)間分別為10小時(shí)和10.9小時(shí),因
,據(jù)此可判斷培訓(xùn)方式一比方式二效率更高;
(2)從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,
則這6人中來自甲組的人數(shù)為:
,
來自乙組的人數(shù)為:
,
記來自甲組的2人為:
;來自乙組的4人為:
,則從這6人中隨機(jī)抽取
2人的不同方法數(shù)有:
,
,
,
,共15種,
其中至少有1人來自甲組的有:
,![]()
共9種,故所求的概率
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】不等式組
表示的平面區(qū)域?yàn)?/span>D,
的最大值等于8.
(1)求
的值;
(2)求
的取值范圍;
(3)若直線
過點(diǎn)P(-3,3),求區(qū)域D在直線
上的投影的長度的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某基地蔬菜大棚采用無土栽培方式種植各類蔬菜.根據(jù)過去50周的資料顯示,該基地周光照量
(小時(shí))都在30小時(shí)以上,其中不足50小時(shí)的有5周,不低于50小時(shí)且不超過70小時(shí)的有35周,超過70小時(shí)的有10周.根據(jù)統(tǒng)計(jì),該基地的西紅柿增加量
(千克)與使用某種液體肥料的質(zhì)量
(千克)之間的關(guān)系如圖所示.
![]()
(1)依據(jù)上圖,是否可用線性回歸模型擬合
與
的關(guān)系?請計(jì)算相關(guān)系數(shù)
并加以說明(精確到0.01).(若
,則線性相關(guān)程度很高,可用線性回歸模型擬合)
(2)蔬菜大棚對光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀運(yùn)行臺數(shù)受周光照量
限制,并有如下關(guān)系:
周光照量 |
|
|
|
光照控制儀運(yùn)行臺數(shù) | 3 | 2 | 1 |
若某臺光照控制儀運(yùn)行,則該臺光照控制儀周利潤為3000元;若某臺光照控制儀未運(yùn)行,則該臺光照控制儀周虧損1000元.以頻率作為概率,商家欲使周總利潤的均值達(dá)到最大,應(yīng)安裝光照控制儀多少臺?
附:相關(guān)系數(shù)公式
,
參考數(shù)據(jù):
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)袋子里有形狀一樣僅顏色不同的6個(gè)小球,其中白球2個(gè),黑球4個(gè)
現(xiàn)從中隨機(jī)取球,每次只取一球.
若每次取球后都放回袋中,求事件“連續(xù)取球四次,至少取得兩次白球”的概率;
若每次取球后都不放回袋中,且規(guī)定取完所有白球或取球次數(shù)達(dá)到五次就終止游戲,記游戲結(jié)束時(shí)一共取球X次,求隨機(jī)變量X的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)調(diào)查了
人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如下表:
年齡 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生 育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2乘2列聯(lián)表,并問是否有99
的把握認(rèn)為以45歲為分界點(diǎn)對“生育二胎放開”政策的支持度有差異:
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計(jì) | |
支持 | a= | c= | |
不支持 | b= | d= | |
合計(jì) |
(2)若對年齡在
的被調(diào)查人中隨機(jī)選取兩人進(jìn)行調(diào)查,恰好這兩人都支持“生育二胎放開”的概率是多少?
參考數(shù)據(jù):P
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】運(yùn)輸公司
年有
萬輛公交車,計(jì)劃
年投入
輛新型號公交車,以后每年投入的新型號公交車數(shù)量均比上年增加
.
(1)
年應(yīng)投入多少輛新型號公交車?
(2)從
年到
年間共投入多少輛新型號公交車?
(3)從哪一年開始,該公司新型號公交車總量超過該公司公交車總量的
?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】教材中指出:當(dāng)
很小,
不太大時(shí),可以用
表示
的近似值,即
(1),我們把近似值與實(shí)際值之差除以實(shí)際值的商的絕對值稱為“相對近似誤差”,一般用字母
表示,即相對近似誤差![]()
(1)利用(1)求出
的近似值,并指出其相對近似誤差(相對近似誤差保留兩位有效數(shù)字)
(2)若利用(1)式計(jì)算
的近似值產(chǎn)生的相對近似誤差不超過
,求正實(shí)數(shù)
的取值范圍;
(3)若利用(1)式計(jì)算
的近似值產(chǎn)生的相對近似誤差不超過
,求正整數(shù)
的最大值。(參考對數(shù)數(shù)值:
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
過點(diǎn)
,且右焦點(diǎn)為
.
(1)求橢圓
的方程;
(2)過點(diǎn)
的直線
與橢圓
交于
兩點(diǎn),交
軸于點(diǎn)
.若
,求證:
為定值;
(3)在(2)的條件下,若點(diǎn)
不在橢圓
的內(nèi)部,點(diǎn)
是點(diǎn)
關(guān)于原點(diǎn)
的對稱點(diǎn),試求三角形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,由半圓
和部分拋物線
合成的曲線
稱為“羽毛球開線”,曲線
與
軸有
兩個(gè)焦點(diǎn),且經(jīng)過點(diǎn)![]()
![]()
(1)求
的值;
(2)設(shè)![]()
為曲線
上的動(dòng)點(diǎn),求
的最小值;
(3)過
且斜率為
的直線
與“羽毛球形線”相交于點(diǎn)
三點(diǎn),問是否存在實(shí)數(shù)
使得
?若存在,求出
的值;若不存在,請說明理由。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com