【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)處,極軸與
軸的非負(fù)半軸重合,直線
的參數(shù)方程為
(
為參數(shù)),曲線
的極坐標(biāo)方程為
.
(1)寫出曲線
的直角坐標(biāo)方程和直線
的普通方程;
(2)設(shè)
,
分別是直線
與曲線
上的點(diǎn),求
的最小值.
【答案】(1)
;
;(2)
.
【解析】試題分析:(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式可得曲線
的直角坐標(biāo)方程,通過消去參數(shù)可將直線
的參數(shù)方程轉(zhuǎn)化為普通方程;
(2)在直角坐標(biāo)系中進(jìn)行求解,運(yùn)用點(diǎn)到直線的距離公式,求出圓心到直線的距離
,利用數(shù)形結(jié)合邊框求出
的最小值.
試題解析:
(1)∵
,∴
,∵
,
,∴
,即
,
∴曲線
的直角坐標(biāo)方程為
.
由
(
為參數(shù)),消去
得
,∴直線
的普通方程為
.
(2)∵
,
分別是直線
與曲線
上的點(diǎn),曲線
是以
為圓心,1為半徑的圓,∴圓心
到直線
的距離
,所以直線
與圓
相離,
∴
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點(diǎn)E在線段AC上,CE=4,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連接AB,BE,如圖②所示,設(shè)點(diǎn)F是AB的中點(diǎn).
(1)求證:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G為AC上一點(diǎn),求三棱錐B-DEG的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本.用系統(tǒng)抽樣法,將全體職工隨機(jī)按1~200編號(hào),并按編號(hào)順序平均分為40組(1~5號(hào),6~10號(hào),…,196~200號(hào)).若第5組抽出的號(hào)碼為22,則第8組抽出的號(hào)碼應(yīng)是________.若用分層抽樣法,則40歲的以下的年齡段應(yīng)抽取__________人.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)當(dāng)
為何值時(shí),
軸為曲線
的切線;
(2)用
表示
中的最小值,設(shè)函數(shù)
,討論
零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)曲線
在點(diǎn)
處的切線平行于
軸,求實(shí)數(shù)
的值;
(2)記
.
(i)討論
的單調(diào)性;
(ii)若
,
為
在
上的最小值,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定橢圓
,稱圓
為橢圓
的“伴隨圓”.已知點(diǎn)
是橢圓
上的點(diǎn)
(1)若過點(diǎn)
的直線
與橢圓
有且只有一個(gè)公共點(diǎn),求
被橢圓
的伴隨圓
所截得的弦長(zhǎng):
(2)
是橢圓
上的兩點(diǎn),設(shè)
是直線
的斜率,且滿足
,試問:直線
是否過定點(diǎn),如果過定點(diǎn),求出定點(diǎn)坐標(biāo),如果不過定點(diǎn),試說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),將曲線
上各點(diǎn)的橫坐標(biāo)都縮短為原來的
倍,縱坐標(biāo)坐標(biāo)都伸長(zhǎng)為原來的
倍,得到曲線
,在極坐標(biāo)系(與直角坐標(biāo)系
取相同的單位長(zhǎng)度,且以原點(diǎn)
為極點(diǎn),以
軸非負(fù)半軸為極軸)中,直線
的極坐標(biāo)方程為
.
(1)求直線
和曲線
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)
是曲線
上的一個(gè)動(dòng)點(diǎn),求它到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系
有相同的長(zhǎng)度單位,曲線
的極坐標(biāo)方程為
.
(1)求直線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)設(shè)曲線
與直線
交于
、
兩點(diǎn),且
點(diǎn)的坐標(biāo)為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家電公司根據(jù)銷售區(qū)域?qū)N售員分成
兩組.2017年年初,公司根據(jù)銷售員的銷售業(yè)績(jī)分發(fā)年終獎(jiǎng),銷售員的銷售額(單位:十萬元)在區(qū)間
內(nèi)對(duì)應(yīng)的年終獎(jiǎng)分別為2萬元,2.5萬元,3萬元,3.5萬元.已知200名銷售員的年銷售額都在區(qū)間
內(nèi),將這些數(shù)據(jù)分成4組:
,得到如下兩個(gè)頻率分布直方圖:
![]()
以上面數(shù)據(jù)的頻率作為概率,分別從
組與
組的銷售員中隨機(jī)選取1位,記
分別表示
組與
組被選取的銷售員獲得的年終獎(jiǎng).
(1)求
的分布列及數(shù)學(xué)期;
(2)試問
組與
組哪個(gè)組銷售員獲得的年終獎(jiǎng)的平均值更高?為什么?
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com