【題目】已知?jiǎng)狱c(diǎn)
是
的頂點(diǎn),
,
,直線
,
的斜率之積為
.
(1)求點(diǎn)
的軌跡
的方程;
(2)設(shè)四邊形
的頂點(diǎn)都在曲線
上,且
,直線
,
分別過(guò)點(diǎn)
,
,求四邊形
的面積為
時(shí),直線
的方程.
【答案】(1)
(2)![]()
【解析】
(1)先設(shè)點(diǎn)
,根據(jù)題意得到
,化簡(jiǎn)整理即可得出結(jié)果;
(2)先由題意可得,直線
的斜率不為0,設(shè)直線
的方程為
,
,
,聯(lián)立直線與橢圓方程,根據(jù)韋達(dá)定理、弦長(zhǎng)公式以及點(diǎn)到直線的距離表示出
,再由圖形的對(duì)稱性得到
,結(jié)合題中條件,即可求出結(jié)果.
(1)設(shè)點(diǎn)
,由已知
,
,
直線
與
的斜率之積為
,
即
,化簡(jiǎn)得
.
所以動(dòng)點(diǎn)
的軌跡
的方程為
.
(2)依題意,直線
的斜率不為0,
設(shè)直線
的方程為
,
,
,
由
,得
,
則
,
,
所以
,
又原點(diǎn)
到直線
的距離
,
所以
,
由圖形的對(duì)稱性可知,
,
所以
,
化簡(jiǎn)得
,解得
,即
,
所以直線
的方程為
,即
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),
軸為極軸建立極坐標(biāo)系,曲線
的方程為
(
為參數(shù)),曲線
的極坐標(biāo)方程為
,若曲線
與
相交于
、
兩點(diǎn).
(1)求
的值;
(2)求點(diǎn)
到
、
兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)若
時(shí),求函數(shù)
的最小值;
(2)若
,證明:函數(shù)
有且只有一個(gè)零點(diǎn);
(3)若函數(shù)
有兩個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在以
為頂點(diǎn)的五面體中,面
是邊長(zhǎng)為3的菱形.
![]()
(1)求證:
;
(2)若
,
,
,
,
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于無(wú)窮數(shù)列
,若正整數(shù)
,使得當(dāng)
時(shí),有
,則稱
為“
不減數(shù)列”.
(1)設(shè)
,
均為正整數(shù),且
,甲:
為“
不減數(shù)列”,乙:
為“
不減數(shù)列”.試判斷命題:“甲是乙的充分條件”的真假,并說(shuō)明理由;
(2)已知函數(shù)
與函數(shù)
的圖象關(guān)于直線
對(duì)稱,數(shù)列
滿足
,
,如果
為“
不減數(shù)列”,試求
的最小值;
(3)對(duì)于(2)中的
,設(shè)
,且
.是否存在實(shí)數(shù)
使得
為“
不減數(shù)列”?若存在,求出
的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐
中,
為等邊三角形,
,
面積是
面積的兩倍,點(diǎn)
在側(cè)棱
上.
![]()
(1)若
,證明:平面
平面
;
(2)若二面角
的大小為
,且
為
的中點(diǎn),求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體
中,
分別為
,
和
的中點(diǎn),則下列關(guān)系:
![]()
①
;
②
平面
;
③
;
④
平面
,
正確的編號(hào)為___________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC,AC⊥BC,H為PC的中點(diǎn),M為AH中點(diǎn),PA=AC=2,BC=1.
![]()
(Ⅰ)求證:AH⊥平面PBC;
(Ⅱ)求PM與平面AHB成角的正弦值;
(Ⅲ)在線段PB上是否存在點(diǎn)N,使得MN∥平面ABC,若存在,請(qǐng)說(shuō)明點(diǎn)N的位置,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為調(diào)查高二年級(jí)學(xué)生的身高情況,按隨機(jī)抽樣的方法抽取80名學(xué)生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高(單位:
)在
內(nèi)的男生人數(shù)有16人.
![]()
(Ⅰ)求在抽取的學(xué)生中,男女生各有多少人?
(Ⅱ)根據(jù)頻率分布直方圖,完成下列的
列聯(lián)表,并判斷能有多大(百分之幾)的把握認(rèn)為“身高與性別有關(guān)”?
|
| 總計(jì) | |
男生人數(shù) | |||
女生人數(shù) | |||
總計(jì) |
附:參考公式和臨界值表:
,
| 5.024 | 6.635 | 7.879 | 10.828 |
| 0.025 | 0.010 | 0.005 | 0.001 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com