【題目】記
,其中
為函數(shù)
的導(dǎo)數(shù)
若對(duì)于
,
,則稱(chēng)函數(shù)
為D上的凸函數(shù).
求證:函數(shù)
是定義域上的凸函數(shù);
已知函數(shù)
,
為
上的凸函數(shù).
求實(shí)數(shù)a的取值范圍;
求函數(shù)
,
的最小值.
【答案】(1)見(jiàn)解析;(2)
;
見(jiàn)解析
【解析】
求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出導(dǎo)函數(shù)的單調(diào)區(qū)間,從而判斷函數(shù)的凹凸性即可;
求出函數(shù)的導(dǎo)數(shù),問(wèn)題轉(zhuǎn)化為
在
上恒成立,求出a的范圍即可;
令
,
,則
,通過(guò)討論a的范圍,求出
的最小值即可.
由
,
,
得
,
,
令
,
,則
,
當(dāng)
時(shí),
,當(dāng)
時(shí),
,
故
在
遞減,在
遞增,
故
,
故對(duì)于
,
,
函數(shù)
是定義域上的凸函數(shù);
由
,
,
得
,
,
函數(shù)
是
上的凸函數(shù),
故
在
上恒成立,
故
在
上恒成立,
故
,故
,
故實(shí)數(shù)a的范圍是
,
令
,
,
則
,
,
,
,
當(dāng)
時(shí),
在
上恒成立,
故F
,
故H
,當(dāng)且僅當(dāng)
時(shí)取等號(hào),
;
當(dāng)
時(shí),
在
恒成立,
故F
在
遞增,
故F
,
故H
;
當(dāng)
時(shí),令
,
存在零點(diǎn)
,
,
其中
,
,
,
,
故
,
結(jié)合
的性質(zhì)有:
時(shí),
,故F
,
時(shí),
,故F
,
故F
在
上遞減,在
遞增,
故F
,
由
知,
,
故
,從而
,
故F
,
又
的圖象是一條不間斷的曲線,
故F
在
上有零點(diǎn)
,
故H
的最小值是0,
綜上,當(dāng)
時(shí),
的最小值是
,
當(dāng)
時(shí),
的最小值是0,
當(dāng)
時(shí),
的最小值是
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語(yǔ)文、數(shù)學(xué)和英語(yǔ)是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個(gè)科目中選取三個(gè)科目作為選考科目,若一名學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目,則稱(chēng)該學(xué)生的選考方案確定;否則,稱(chēng)該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個(gè)選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.
某學(xué)校為了了解高一年級(jí)420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學(xué) | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有8人 | 8 | 8 | 4 | 2 | 1 | 1 |
選考方案待確定的有6人 | 4 | 3 | 0 | 1 | 0 | 0 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 1 | 0 | 0 | 1 |
(Ⅰ)估計(jì)該學(xué)校高一年級(jí)選考方案確定的學(xué)生中選考生物的學(xué)生有多少人?
(Ⅱ)假設(shè)男生、女生選擇選考科目是相互獨(dú)立的.從選考方案確定的8位男生隨機(jī)選出1人,從選考方案確定的10位女生中隨機(jī)選出1人,試求該男生和該女生的選考方案中都含有歷史科目的概率;
(Ⅲ)從選考方案確定的8名男生隨機(jī)選出2名,設(shè)隨機(jī)變量?jī)擅猩x考方案相同時(shí)
,兩名男生選考方案不同時(shí)
,求
的分布列及數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列
為等差數(shù)列,
,
,數(shù)列
的前
項(xiàng)和為
,若對(duì)一切
,恒有
,則
能取到的最大整數(shù)是( )
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求函數(shù)
的極小值;
(2)若
上,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐
中,已知
平面PAD,
,
,E為棱PC上的一點(diǎn),經(jīng)過(guò)A,B,E三點(diǎn)的平面與棱PD相交于點(diǎn)F.
求證:
平面PAD;
求證:
;
若平面
平面PCD,求證:
.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于項(xiàng)數(shù)為
(
)的有窮正整數(shù)數(shù)列
,記
(
),即
為
中的最大值,稱(chēng)數(shù)列
為數(shù)列
的“創(chuàng)新數(shù)列”.比如
的“創(chuàng)新數(shù)列”為
.
(1)若數(shù)列
的“創(chuàng)新數(shù)列”
為1,2,3,4,4,寫(xiě)出所有可能的數(shù)列
;
(2)設(shè)數(shù)列
為數(shù)列
的“創(chuàng)新數(shù)列”,滿(mǎn)足
(
),求證:
(
);
(3)設(shè)數(shù)列
為數(shù)列
的“創(chuàng)新數(shù)列”,數(shù)列
中的項(xiàng)互不相等且所有項(xiàng)的和等于所有項(xiàng)的積,求出所有的數(shù)列
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四邊形ABCD是直角梯形,
,
平面ABCD,
,
.
![]()
求SC與平面ASD所成的角余弦值;
求平面SAB和平面SCD所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】每年的金秋十月,越野e族阿拉善英雄會(huì)在內(nèi)蒙古自治區(qū)阿拉善盟阿左旗騰格里沙漠舉行,該項(xiàng)目已打造成集沙漠競(jìng)技運(yùn)動(dòng)、汽車(chē)文化極致體驗(yàn)、主題休閑度假為一體的超級(jí)汽車(chē)文化賽事娛樂(lè)綜合體.為了減少對(duì)環(huán)境的污染,某環(huán)保部門(mén)租用了特制環(huán)保車(chē)清潔現(xiàn)場(chǎng)垃圾.通過(guò)查閱近5年英雄會(huì)參會(huì)人數(shù)
(萬(wàn)人)與沙漠中所需環(huán)保車(chē)輛數(shù)量
(輛),得到如下統(tǒng)計(jì)表:
參會(huì)人數(shù) | 11 | 9 | 8 | 10 | 12 |
所需環(huán)保車(chē)輛 | 28 | 23 | 20 | 25 | 29 |
(1)根據(jù)統(tǒng)計(jì)表所給5組數(shù)據(jù),求出
關(guān)于
的線性回歸方程
.
(2)已知租用的環(huán)保車(chē)平均每輛的費(fèi)用
(元)與數(shù)量
(輛)的關(guān)系為
.主辦方根據(jù)實(shí)際參會(huì)人數(shù)為所需要投入使用的環(huán)保車(chē),
每輛支付費(fèi)用6000元,超出實(shí)際需要的車(chē)輛,主辦方不支付任何費(fèi)用.預(yù)計(jì)本次英雄會(huì)大約有14萬(wàn)人參加,根據(jù)(Ⅰ)中求出的線性回歸方程,預(yù)測(cè)環(huán)保部門(mén)在確保清潔任務(wù)完成的前提下,應(yīng)租用多少輛環(huán)保車(chē)?獲得的利潤(rùn)
是多少?(注:利潤(rùn)
主辦方支付費(fèi)用
租用車(chē)輛的費(fèi)用).
參考公式:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系
中,點(diǎn)
在拋物線
:
上,直線
:
與拋物線
交于
,
兩點(diǎn),且直線
,
的斜率之和為-1.
![]()
(1)求
和
的值;
(2)若
,設(shè)直線
與
軸交于
點(diǎn),延長(zhǎng)
與拋物線
交于點(diǎn)
,拋物線
在點(diǎn)
處的切線為
,記直線
,
與
軸圍成的三角形面積為
,求
的最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com