【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(Ⅰ)求直線
的直角坐標(biāo)方程與曲線
的普通方程;
(Ⅱ)已知點(diǎn)
設(shè)直線
與曲線
相交于
兩點(diǎn),求
的值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856310)
已知函數(shù)f(x)=x+
+ln x(a∈R).
(Ⅰ)當(dāng)a=2時(shí), 求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若關(guān)于x的函數(shù)g(x)=
-f(x)+ln x+2e(e為自然對(duì)數(shù)的底數(shù))有且只有一個(gè)零點(diǎn),求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
是
的導(dǎo)函數(shù),討論
的單調(diào)性;
(2)若
(
是自然對(duì)數(shù)的底數(shù)),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)若
,求曲線
在
處的切線方程;
(Ⅱ)若
,求證:
;
(Ⅲ)當(dāng)
時(shí),若關(guān)于
的不等式
的解集為
,且
,
,求
的取值范圍(用
表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知無窮數(shù)列
的前
項(xiàng)中的最大項(xiàng)為
,最小項(xiàng)為
,設(shè)![]()
(1)若
,求數(shù)列
的通項(xiàng)公式;
(2)若
,求數(shù)列
的前
項(xiàng)和
;
(3)若數(shù)列
是等差數(shù)列,求證:數(shù)列
是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)討論
的單調(diào)性;
(2)定義:對(duì)于函數(shù)
,若存在
,使
成立,則稱
為函數(shù)
的不動(dòng)點(diǎn).如果函數(shù)
存在不動(dòng)點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程及直線
的直角坐標(biāo)方程;
(2)求曲線
上的點(diǎn)到直線
的距離的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代名著《張丘建算經(jīng)》中記載:“今有方錐下廣二丈,高三丈,欲斬末為方亭;令上方六尺:?jiǎn)柾し綆缀?”大致意思是:有一個(gè)四棱錐下底邊長(zhǎng)為二丈,高三丈;現(xiàn)從上面截取一段,使之成為正四棱臺(tái)狀方亭,且四棱臺(tái)的上底邊長(zhǎng)為六尺,則該正四棱臺(tái)的高為________尺,體積是_______立方尺(注:1丈=10尺).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語文、數(shù)學(xué)和英語是學(xué)生的必考科目,學(xué)生還須從物理、化學(xué)、生物、歷史、地理和政治六個(gè)科目中選取三個(gè)科目作為選考科目.若一個(gè)學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目,則稱該學(xué)生確定選考方案,否則稱該學(xué)生待確定選考方案.例如學(xué)生甲選擇“物理、化學(xué)和生物”三個(gè)選考科目,則稱學(xué)生甲確定選考方案.某校為了解高一年級(jí)
名學(xué)生選考科目的意向,隨機(jī)選取
名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)情況如下表:
性別 | 選考方案確定情況 | 物理 | 化學(xué) | 生物 | 歷史 | 地理 | 政治 |
男 生 | 選考方案確定的有 |
|
|
|
|
|
|
選考方案待確定的有 |
|
|
|
|
|
| |
女 生 | 選考方案確定的有 |
|
|
|
|
|
|
選考方案待確定的有 |
|
|
|
|
|
|
(1)估計(jì)該校高一年級(jí)已確定選考方案的學(xué)生有多少人?
(2)假設(shè)男生、女生選擇選考科目是相互獨(dú)立的.從確定選考方案的
名男生中隨機(jī)選出
名,從確定選考方案的
名女生中隨機(jī)選出
名,試求該男生和該女生的選考方案中都含有歷史科目的概率;
(3)從確定選考方案的8名男生中隨機(jī)選出2名,設(shè)隨機(jī)變量
表示
名男生選考方案相同,
表示
名男生選考方案不同,求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com