【題目】如圖,AB是的⊙O直徑,CB與⊙O相切于B,E為線段CB上一點(diǎn),連接AC、AE分別交⊙O于D、G兩點(diǎn),連接DG交CB于點(diǎn)F. (Ⅰ)求證:C、D、G、E四點(diǎn)共圓.
(Ⅱ)若F為EB的三等分點(diǎn)且靠近E,EG=1,GA=3,求線段CE的長.![]()
【答案】(Ⅰ)證明:連接BD,則∠AGD=∠ABD, ∵∠ABD+∠DAB=90°,∠C+∠CAB=90°
∴∠C=∠AGD,
∴∠C+∠DGE=180°,
∴C,E,G,D四點(diǎn)共圓
(Ⅱ)解:∵EGEA=EB2 , EG=1,GA=3,
∴EB=2,
又∵F為EB的三等分點(diǎn)且靠近E,
∴
,
,
又∵FGFD=FEFC=FB2 ,
∴
,CE=2. ![]()
【解析】(Ⅰ)連接BD,由題設(shè)條件結(jié)合圓的性質(zhì)能求出∠C=∠AGD,從而得到∠C+∠DGE=180°,由此能證明C,E,G,D四點(diǎn)共圓.(Ⅱ)由切割線定理推導(dǎo)出EB=2,由此能求出CE的長.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x(lnx﹣2ax)有兩個極值點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,
)
B.(0,
)
C.(0,
)
D.(
,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有
個小球,甲、乙兩位同學(xué)輪流且不放回抓球,每次最少抓1個球,最多抓3個球,規(guī)定誰抓到最后一個球誰贏. 如果甲先抓,那么下列推斷正確的是( )
A. 若
=4,則甲有必贏的策略 B. 若
=6,則乙有必贏的策略
C. 若
=9,則甲有必贏的策略 D. 若
=11,則乙有必贏的策略
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
參數(shù)方程為
(
為參數(shù)),當(dāng)
時,曲線
上對應(yīng)的點(diǎn)為
.以原點(diǎn)
為極點(diǎn),以
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)設(shè)曲線
與
的公共點(diǎn)為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)
的一段圖象如圖5所示:將
的圖像向右平移
個單位,可得到函數(shù)
的圖象,且圖像關(guān)于原點(diǎn)對稱,
![]()
(1)求
的值;
(2)求
的最小值,并寫出
的表達(dá)式;
(3)若關(guān)于
的函數(shù)
在區(qū)間
上最小值為
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1:
(t為參數(shù),t≠0),其中0≤α≤π,在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=2sinθ,C3:ρ=2
cosθ.
(1)求C2與C3交點(diǎn)的直角坐標(biāo);
(2)若C1與C2相交于點(diǎn)A,C1與C3相交于點(diǎn)B,求|AB|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時,求證:
;
(2)當(dāng)
時,若不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(3)若
,證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
,直線
,且點(diǎn)
不在直線
上.
(1)若點(diǎn)
關(guān)于直線
的對稱點(diǎn)為
,求
點(diǎn)坐標(biāo);
(2)求證:點(diǎn)
到直線
的距離
;
(3)當(dāng)點(diǎn)
在函數(shù)
圖像上時,(2)中的公式變?yōu)?/span>
,
請參考該公式,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項(xiàng)為正的數(shù)列
滿足:
,
(
).
(1)求
;
(2)證明:
(
);
(3)記數(shù)列
的前
項(xiàng)和為
,求證:
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com