已知函數(shù)
,其中
為正實數(shù),
是
的一個極值點(diǎn).
(Ⅰ)求
的值;
(Ⅱ)當(dāng)
時,求函數(shù)
在
上的最小值.
(Ⅰ)
;(Ⅱ)詳見解析.
解析試題分析:(Ⅰ)由
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè)函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
(本小題滿分15分)已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知
科目:高中數(shù)學(xué)
來源:
題型:解答題
(本小題滿分13分)已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表 湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
為函數(shù)
的一個極值點(diǎn),得到
便可求出
的值,但在求得答案后注意
處附近左、右兩側(cè)導(dǎo)數(shù)符號相反,即成為極值點(diǎn)的必要性;(Ⅱ)對于含參函數(shù)的最值問題,一般結(jié)合導(dǎo)數(shù)考察函數(shù)在相應(yīng)區(qū)間的單調(diào)性,利用端點(diǎn)值以及函數(shù)的極值確定函數(shù)的最小值.
試題解析:![]()
(Ⅰ)因為
是函數(shù)
的一個極值點(diǎn),
所以
,因此,
,解得
,
經(jīng)檢驗,當(dāng)
時,
是
的一個極值點(diǎn),故所求
的值為
.
4分
(Ⅱ)由(Ⅰ)可知,![]()
令
,得![]()
與
的變化情況如下:![]()
![]()
![]()
![]()
![]()
![]()
![]()
+ 0 - 0 + ![]()
![]()
![]()
![]()
![]()
![]()
![]()
西城學(xué)科專項測試系列答案
小考必做系列答案
小考實戰(zhàn)系列答案
小考復(fù)習(xí)精要系列答案
小考總動員系列答案
小升初必備沖刺48天系列答案
68所名校圖書小升初高分奪冠真卷系列答案
伴你成長周周練月月測系列答案
小升初金卷導(dǎo)練系列答案
萌齊小升初強(qiáng)化模擬訓(xùn)練系列答案
年級
高中課程
年級
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
![]()
(1) 當(dāng)
時,求
的單調(diào)區(qū)間;
(2) 若當(dāng)
時,![]()
恒成立,求
的取值范圍.
.
(1)當(dāng)
時,求
在
最小值;
(2)若
存在單調(diào)遞減區(qū)間,求
的取值范圍;
(3)求證:
(
).
是實數(shù),函數(shù)
,
和
,分別是
的導(dǎo)函數(shù),若
在區(qū)間
上恒成立,則稱
和
在區(qū)間
上單調(diào)性一致.
(Ⅰ)設(shè)
,若函數(shù)
和
在區(qū)間
上單調(diào)性一致,求實數(shù)
的取值范圍;
(Ⅱ)設(shè)
且
,若函數(shù)
和
在以
為端點(diǎn)的開區(qū)間上單調(diào)性一致,求
的最大值.
.
(Ⅰ)當(dāng)
時,求函數(shù)
的單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)
在區(qū)間
上的最小值.
,
(其中
,
),且函數(shù)
的圖象在點(diǎn)
處的切線與函數(shù)
的圖象在點(diǎn)
處的切線重合.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)若
,滿足
,求實數(shù)
的取值范圍;
(Ⅲ)若
,試探究
與
的大小,并說明你的理由.
(
).
(Ⅰ)當(dāng)
時,求函數(shù)
的極值;
(Ⅱ)若對任意
,不等式
恒成立,求實數(shù)
的取值范圍.
,
(1)若x=1時
取得極值,求實數(shù)
的值;
(2)當(dāng)
時,求
在
上的最小值;
(3)若對任意
,直線
都不是曲線
的切線,求實數(shù)
的取值范圍。
在點(diǎn)
處取得極小值-4,使其導(dǎo)數(shù)
的
的取值范圍為
,求:
(1)
的解析式;
(2)
,求
的最大值;
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網(wǎng)安備42018502000812號