科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
過點(diǎn)
,其參數(shù)方程為
(
為參數(shù),
),以
為極點(diǎn),
軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)求已知曲線
和曲線
交于
兩點(diǎn),且
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】【2018山西太原市高三3月模擬】已知橢圓
的左、右頂點(diǎn)分別為
,右焦點(diǎn)為
,點(diǎn)
在橢圓
上.
(I)求橢圓方程;
(II)若直線
與橢圓
交于
兩點(diǎn),已知直線
與
相交于點(diǎn)
,證明:點(diǎn)
在定直線上,并求出定直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校倡導(dǎo)為特困學(xué)生募捐,要求在自動購水機(jī)處每購買一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計了連續(xù)5天的售出礦泉水箱數(shù)和收入情況,列表如下:
售出水量 | 7 | 6 | 6 | 5 | 6 |
收入 | 165 | 142 | 148 | 125 | 150 |
學(xué)校計劃將捐款以獎學(xué)金的形式獎勵給品學(xué)兼優(yōu)的特困生,規(guī)定:特困生綜合考核前20名,獲一等獎學(xué)金500元;綜合考核21-50名,獲二等獎學(xué)金300元;綜合考核50名以后的不獲得獎學(xué)金.
(1)若
與
成線性相關(guān),則某天售出9箱水時,預(yù)計收入為多少元?
(2)甲乙兩名學(xué)生獲一等獎學(xué)金的概率均為
,獲二等獎學(xué)金的概率均為
,不獲得獎學(xué)金的概率均為
,已知甲乙兩名學(xué)生獲得哪個等級的獎學(xué)金相互獨(dú)立,求甲乙兩名學(xué)生所獲得獎學(xué)金之和
的分布列及數(shù)學(xué)期望;
附:回歸方程
,其中
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
.
(1)若函數(shù)
在
上是減函數(shù),求實(shí)數(shù)
的取值范圍;
(2)若函數(shù)
在
上存在兩個極值點(diǎn)
,且
,證明:
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點(diǎn)
在橢圓
上,
為橢圓
的右焦點(diǎn),
分別為橢圓
的左,右兩個頂點(diǎn).若過點(diǎn)
且斜率不為0的直線
與橢圓
交于
兩點(diǎn),且線段
的斜率之積為
.
(1)求橢圓
的方程;
(2)已知直線
與
相交于點(diǎn)
,證明:
三點(diǎn)共線.
查看答案和解析>>
科目: 來源: 題型:
【題目】以原點(diǎn)
為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線
的極坐標(biāo)方程為:
,在平面直角坐標(biāo)系
中,直線
的方程為
(
為參數(shù)).
(1)求曲線
和直線
的直角坐標(biāo)方程;
(2)已知直線
交曲線
于
,
兩點(diǎn),求
,
兩點(diǎn)的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知某班的50名學(xué)生進(jìn)行不記名問卷調(diào)查,內(nèi)容為本周使用手機(jī)的時間長,如表:
時間長(小時) |
|
|
|
|
|
女生人數(shù) | 4 | 11 | 3 | 2 | 0 |
男生人數(shù) | 3 | 17 | 6 | 3 | 1 |
(1)求這50名學(xué)生本周使用手機(jī)的平均時間長;
(2)時間長為
的7名同學(xué)中,從中抽取兩名,求其中恰有一個女生的概率;
(3)若時間長為
被認(rèn)定“不依賴手機(jī)”,
被認(rèn)定“依賴手機(jī)”,根據(jù)以上數(shù)據(jù)完成
列聯(lián)表:
不依賴手機(jī) | 依賴手機(jī) | 總計 | |
女生 | |||
男生 | |||
總計 |
能否在犯錯概率不超過0.15的前提下,認(rèn)為學(xué)生的性別與依賴手機(jī)有關(guān)系?
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:
,
)
查看答案和解析>>
科目: 來源: 題型:
【題目】【2018湖南(長郡中學(xué)、株洲市第二中學(xué))、江西(九江一中)等十四校高三第一次聯(lián)考】已知函數(shù)
(其中
且
為常數(shù),
為自然對數(shù)的底數(shù),
).
(Ⅰ)若函數(shù)
的極值點(diǎn)只有一個,求實(shí)數(shù)
的取值范圍;
(Ⅱ)當(dāng)
時,若
(其中
)恒成立,求
的最小值
的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com