科目: 來源: 題型:
【題目】給出下列四個命題:
① 函數(shù)
與函數(shù)
表示同一個函數(shù).
② 奇函數(shù)的圖象一定過直角坐標(biāo)系的坐標(biāo)原點(diǎn).
③ 函數(shù)
的圖象可由
的圖象向左平移
個單位長度得到.
④ 若函數(shù)
的定義域?yàn)?/span>
,則函數(shù)
的定義域?yàn)?/span>
.
其中正確命題的序號是_________ (填上所有正確命題的序號) .
查看答案和解析>>
科目: 來源: 題型:
【題目】某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3000元時,可全部租出.當(dāng)每輛車的月租金每增加
元時,未租出的車將會增加一輛.租出的車每輛每月需要維護(hù)費(fèi)
元,未租出的車每輛每月需要維護(hù)費(fèi)
元.
(1)當(dāng)每輛車的月租金定為
元時,能租出多少輛車?
(2)當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù),
),以
為極點(diǎn),以
軸正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(Ⅰ)求直線
的普通方程和曲線
的直角坐標(biāo)方程;
(Ⅱ)設(shè)
,直線
交曲線
于
兩點(diǎn),
是直線
上的點(diǎn),且
,當(dāng)
最大時,求點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
,
.
(1)求函數(shù)
在點(diǎn)
處的切線方程;
(2)求函數(shù)
的單調(diào)區(qū)間;
(3) 求證:當(dāng)
時,
恒成立.
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)
萬件,需另投入成本為
,當(dāng)年產(chǎn)量不足80萬件時,
(萬元).當(dāng)年產(chǎn)量不小于80萬件時,
(萬元).每件商品售價為50元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤
(萬元)關(guān)于年產(chǎn)量
(萬件)的函數(shù)解析式;
(2)年產(chǎn)量為多少萬件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目: 來源: 題型:
【題目】公交車的數(shù)量太多容易造成資源浪費(fèi),太少又難以滿足乘客的需求,為了合理布置車輛,公交公司在2路車的乘客中隨機(jī)調(diào)查了50名乘客,經(jīng)整理,他們候車時間(單位:
)的莖葉圖如下:
![]()
(Ⅰ)將候車時間分為
八組,作出相應(yīng)的頻率分布直方圖;
![]()
(Ⅱ)若公交公司將2路車發(fā)車時間調(diào)整為每隔15
發(fā)一趟車,那么上述樣本點(diǎn)將發(fā)生變化(例如候車時間為9
的不變,候車時間為17
的變?yōu)?/span>2
),現(xiàn)從2路車的乘客中任取5人,設(shè)其中候車時間不超過10
的乘客人數(shù)為
,求
的數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】一種藥在病人血液中的含量不低于2克時,它才能起到有效治療的作用.已知每服用m(
且
)個單位的藥劑,藥劑在血液中的含量y(克)隨著時間x(時)變化的函數(shù)關(guān)系式近似為
,其中
.
(1)若病人一次服用3個單位的藥劑,則有效治療時間可達(dá)多少小時?
(2)若病人第一次服用2個單位的藥劑,4個小時后再服用m個單位的藥劑,要使接下來的2個小時中能夠持續(xù)有效治療,試求m的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
.若g(x)存在2個零點(diǎn),則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目: 來源: 題型:
【題目】函數(shù)
的定義域?yàn)?/span>
,且對任意
,有
,且當(dāng)
時
.
(1)證明:
是奇函數(shù);
(2)證明:
在
上是減函數(shù);
(3)求
在區(qū)間
上的最大值和最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com