科目: 來源: 題型:
【題目】我國是水資源匱乏國家,節(jié)約用水是每個(gè)中國公民應(yīng)有的意識(shí).為了保護(hù)水資源,提倡節(jié)約用水,某城市對(duì)居民生活用水實(shí)行“階梯水價(jià)”,計(jì)費(fèi)方法如下表:
每戶每月用水量 | 水價(jià) |
不超過12 | 3元/ |
超過12 | 6元/ |
超過18 | 9元/ |
(1)該城市居民小張家月用水量記為
,應(yīng)交納水費(fèi)y(元),試建立y與x的函數(shù)解析式,并作出其圖像;
(2)若小張家十月份交納水費(fèi)90元,求他家十月份的用水量.
查看答案和解析>>
科目: 來源: 題型:
【題目】據(jù)某氣象中心觀察和預(yù)測:發(fā)生于M地的沙塵暴一直向正南方向移動(dòng),其移動(dòng)速度v(km/h)與時(shí)間t(h)的函數(shù)圖象如圖所示.過線段OC上一點(diǎn)T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即時(shí)間t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km).
![]()
(1)當(dāng)t=4時(shí),求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來;
(3)若N城位于M地正南方向,且距M地650 km,試判斷這場沙塵暴是否會(huì)侵襲到N城,如果會(huì),在沙塵暴發(fā)生后多長時(shí)間它將侵襲到N城?如果不會(huì),請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,二次函數(shù)
的圖像與x軸交于
和
,與y軸交于C點(diǎn),且
是等腰三角形.
![]()
(1)求
的解析式;
(2)在A、B之間的拋物線段上是否存在異于A、B的點(diǎn)D,使
與
的面積相等?若存在,求D點(diǎn)的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】技術(shù)員小張對(duì)甲、乙兩項(xiàng)工作投入時(shí)間
(小時(shí))與做這兩項(xiàng)工作所得報(bào)酬
(百元)的關(guān)系式為:
,若這兩項(xiàng)工作投入的總時(shí)間為120小時(shí),且每項(xiàng)工作至少投入20小時(shí).
(1)試建立小張所得總報(bào)酬
(單位:百元)與對(duì)乙項(xiàng)工作投入的時(shí)間
(單位:小時(shí))的函數(shù)關(guān)系式,并指明函數(shù)定義域;
(2)小張如何計(jì)劃使用時(shí)間,才能使所得報(bào)酬最高?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知定義在
上的偶函數(shù)
和奇函數(shù)
,且
.
(1)求函數(shù)
,
的解析式;
(2)設(shè)函數(shù)
,記
(
,
).探究是否存在正整數(shù)
,使得對(duì)任意的
,不等式
恒成立?若存在,求出所有滿足條件的正整數(shù)
的值;若不存在,請說明理由.
參考結(jié)論:設(shè)
均為常數(shù),函數(shù)
的圖象關(guān)于點(diǎn)
對(duì)稱的充要條件是
.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了測量某塔的高度,某人在一條水平公路
兩點(diǎn)進(jìn)行測量.在
點(diǎn)測得塔底
在南偏西
,塔頂仰角為
,此人沿著南偏東
方向前進(jìn)10米到
點(diǎn),測得塔頂?shù)难鼋菫?/span>
,則塔的高度為( )
A. 5米B. 10米C. 15米D. 20米
查看答案和解析>>
科目: 來源: 題型:
【題目】信息科技的進(jìn)步和互聯(lián)網(wǎng)商業(yè)模式的興起,全方位地改變了大家金融消費(fèi)的習(xí)慣和金融交易模式,現(xiàn)在銀行的大部分業(yè)務(wù)都可以通過智能終端設(shè)備完成,多家銀行職員人數(shù)在悄然減少.某銀行現(xiàn)有職員320人,平均每人每年可創(chuàng)利20萬元.據(jù)評(píng)估,在經(jīng)營條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.2萬元,但銀行需付下崗職員每人每年6萬元的生活費(fèi),并且該銀行正常運(yùn)轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的
,為使裁員后獲得的經(jīng)濟(jì)效益最大,該銀行應(yīng)裁員多少人?此時(shí)銀行所獲得的最大經(jīng)濟(jì)效益是多少萬元?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知關(guān)于
的不等式
有且僅有兩個(gè)正整數(shù)解(其中e=2.71828… 為自然對(duì)數(shù)的底數(shù)),則實(shí)數(shù)
的取值范圍是( )
A. (
,
] B. (
,
] C. [
,
) D. [
,
)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),若
,求
的取值范圍;
(2)若定義在
上奇函數(shù)
滿足
,且當(dāng)
時(shí),
,求
在
上的解析式;
(3)對(duì)于(2)中的
,若關(guān)于
的不等式
在
上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓
:
與直線
:
,動(dòng)直線
過定點(diǎn)
.
![]()
(1)若直線
與圓
相切,求直線
的方程;
(2)若直線
與圓
相交于
、
兩點(diǎn),點(diǎn)M是PQ的中點(diǎn),直線
與直線
相交于點(diǎn)N.探索
是否為定值,若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com