科目: 來源: 題型:
【題目】已知函數(shù)
(
).
(1)討論函數(shù)
在定義域內(nèi)的極值點(diǎn)的個數(shù);
(2)若函數(shù)
在
處取得極值,
(0,
),
恒成立,求實(shí)數(shù)
的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù):
①
;
②
;
③
;
④
;
⑤
;
(1)試從上述五個式子中選擇一個,求出這個常數(shù);
(2)根據(jù)(1)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】下圖是某市
年至
年環(huán)境基礎(chǔ)設(shè)施投資額
(單位:億元)的條形圖.
![]()
(1)若從
年到
年的五年中,任意選取兩年,則這兩年的投資額的平均數(shù)不少于
億元的概率;
(2)為了預(yù)測該市
年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了
與時(shí)間變量
的兩個線性回歸模型.根據(jù)
年至
年的數(shù)據(jù)(時(shí)間變量
的值依次為
)建立模型①:
;根據(jù)
年至
年的數(shù)據(jù)(時(shí)間變量
的值依次為
)建立模型②:
.
(i)分別利用這兩個模型,求該地區(qū)
年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值;
(ii)你認(rèn)為用哪個模型得到的預(yù)測值更可靠?并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】太極是中國古代的哲學(xué)術(shù)語,意為派生萬物的本源.太極圖是以黑白兩個魚形紋組成的圓形圖案,俗稱陰陽魚.太極圖形象化地表達(dá)了陰陽輪轉(zhuǎn),相反相成是萬物生成變化根源的哲理.太極圖形展現(xiàn)了一種互相轉(zhuǎn)化,相對統(tǒng)一的形式美.按照太極圖的構(gòu)圖方法,在平面直角坐標(biāo)系中,圓
被
的圖象分割為兩個對稱的魚形圖案,圖中的兩個一黑一白的小圓通常稱為“魚眼”,已知小圓的半徑均為
,現(xiàn)在大圓內(nèi)隨機(jī)投放一點(diǎn),則此點(diǎn)投放到“魚眼”部分的概率為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,圓
:
,直線
:
,直線
過點(diǎn)
,傾斜角為
,以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.
(1)寫出直線
與圓
的交點(diǎn)極坐標(biāo)及直線
的參數(shù)方程;
(2)設(shè)直線
與圓
交于
,
兩點(diǎn),求
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對
四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學(xué)對這四件參賽作品預(yù)測如下:
甲說:“是
或
作品獲得一等獎”; 乙說:“
作品獲得一等獎”;
丙說:“
兩件作品未獲得一等獎”; 丁說:“是
作品獲得一等獎”.
評獎揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是_________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
,其中
,設(shè)
為
導(dǎo)函數(shù).
(Ⅰ)設(shè)
,若
恒成立,求
的范圍;
(Ⅱ)設(shè)函數(shù)
的零點(diǎn)為
,函數(shù)
的極小值點(diǎn)為
,當(dāng)
時(shí),求證:
.
查看答案和解析>>
科目: 來源: 題型:
【題目】某互聯(lián)網(wǎng)公司為了確定下一季度的前期廣告投入計(jì)劃,收集了近
個月廣告投入量
(單位:萬元)和收益
(單位:萬元)的數(shù)據(jù)如下表:
月份 |
|
|
|
|
|
|
廣告投入量 |
|
|
|
|
|
|
收益 |
|
|
|
|
|
|
他們分別用兩種模型①
,②
分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計(jì)量的值:
|
|
|
|
|
|
|
|
![]()
(Ⅰ)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個模型?并說明理由;
(Ⅱ)殘差絕對值大于
的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除:
(。┨蕹惓(shù)據(jù)后求出(Ⅰ)中所選模型的回歸方程
(ⅱ)若廣告投入量
時(shí),該模型收益的預(yù)報(bào)值是多少?
附:對于一組數(shù)據(jù)
,
,……,
,其回歸直線
的斜率和截距的最小二乘估計(jì)分別為:
,
.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),現(xiàn)從高一學(xué)生中抽取100人做調(diào)查,得到
列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計(jì) | |
男生 | 40 | ||
女生 | 30 | ||
合計(jì) | 100 |
且已知在100個人中隨機(jī)抽取1人,抽到喜歡游泳的學(xué)生的概率為
.
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由.
參考公式與臨界值表:
.
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com