科目: 來源: 題型:
【題目】為響應(yīng)黨中央“扶貧攻堅”的號召,某單位指導(dǎo)一貧困村通過種植紫甘薯來提高經(jīng)濟收入.紫甘薯對環(huán)境溫度要求較高,根據(jù)以往的經(jīng)驗,隨著溫度的升高,其死亡株數(shù)成增長的趨勢.下表給出了2017年種植的一批試驗紫甘薯在溫度升高時6組死亡的株數(shù):
![]()
經(jīng)計算:
,
,
,
,
,
,
,其中
分別為試驗數(shù)據(jù)中的溫度和死亡株數(shù),
.
(1)若用線性回歸模型,求
關(guān)于
的回歸方程
(結(jié)果精確到
);
(2)若用非線性回歸模型求得
關(guān)于
的回歸方程為
,且相關(guān)指數(shù)為
.
(i)試與(1)中的回歸模型相比,用
說明哪種模型的擬合效果更好;
(ii)用擬合效果好的模型預(yù)測溫度為
時該批紫甘薯死亡株數(shù)(結(jié)果取整數(shù)).
附:對于一組數(shù)據(jù)
,
,……,
,其回歸直線
的斜率和截距的最小二乘估計分別為:
;相關(guān)指數(shù)為:
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列
滿足
是數(shù)列
的前
項的和.
(1)求數(shù)列
的通項公式;
(2)若
成等差數(shù)列,
,18,
成等比數(shù)列,求正整數(shù)
的值;
(3)是否存在
,使得
為數(shù)列
中的項?若存在,求出所有滿足條件的
的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)且
)曲線
的參數(shù)方程為
(
為參數(shù),且
),以
為極點,
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為:
,曲線
的極坐標(biāo)方程為
.
(1)求
與
的交點到極點的距離;
(2)設(shè)
與
交于
點,
與
交于
點,當(dāng)
在
上變化時,求
的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)f(x)=ax2+(1-a)x+a-3.
(1)若不等式f(x)≥-3對一切實數(shù)x恒成立,求實數(shù)a的取值范圍;
(2)解關(guān)于x的不等式f(x)<a-2(a∈R).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)若曲線
上存在唯一的點
,使得曲線在該點處的切線與曲線只有一個公共點
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1=3an+4,n∈N*.
(1)證明:數(shù)列{an+2}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)設(shè)bn=(a2n+2)log3(an+2),求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修
:不等式選講
已知函數(shù)f(x)=|2x+3|+|2x﹣1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若關(guān)于x的不等式f(x)≤|3m+1|有解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓O經(jīng)過橢圓C:
=1(a>b>0)的兩個焦點以及兩個頂點,且點(b,
)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與圓O相切,與橢圓C交于M、N兩點,且|MN|=
,求直線l的傾斜角.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com