科目: 來源: 題型:
【題目】已知點
為坐標(biāo)原點,橢圓
的左、右焦點分別為
,
,通徑長(即過焦點且垂直于長軸的直線與橢圓
相交所得的弦長)為3,短半軸長為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)設(shè)過點
的直線
與橢圓
相交于
,
兩點,線段
上存在一點
到
,
兩邊的距離相等,若
,間直線
的斜率是否存在?若存在,求直線
的斜率的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】籃球運動于1891年起源于美國,它是由美國馬薩諸塞州斯普林菲爾德(舊譯麻省春田)市基督教青年會(
)訓(xùn)練學(xué)校的體育教師詹姆士·奈史密斯博士(
)發(fā)明.它是以投籃、上籃和扣籃為中心的對抗性體育運動之一,是可以增強體質(zhì)的一種運動.已知籃球的比賽中,得分規(guī)則如下:3分線外側(cè)投入可得3分,3分線內(nèi)側(cè)投入可得2分,不進得0分.經(jīng)過多次試驗,某人投籃100次,有20個是3分線外側(cè)投入,30個是3分線內(nèi)側(cè)投入,其余不能入籃,且每次投籃為相互獨立事件.
(1)求該人在4次投籃中恰有三次是3分線外側(cè)投入的概率;
(2)求該人在4次投籃中至少有一次是3分線外側(cè)投入的概率;
(3)求該人兩次投籃后得分
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】在四棱錐
中,底面
為平行四邊形,平面
平面
,
是邊長為4的等邊三角形,
,
是
的中點.
![]()
(1)求證:
;
(2)若直線
與平面
所成角的正弦值為
,求平面
與平面
所成的銳二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】過直線2x+y+4=0和圓x2+y2+2x﹣4y+1=0的交點,且面積最小的圓方程為( )
A.(x+
)2+(y+
)2=
B.(x﹣
)2+(y﹣
)2=![]()
C.(x﹣
)2+(y+
)2=
D.(x+
)2+(y﹣
)2=![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在長方體ABCD﹣A1B1C1D1,若AB=BC,E,F分別是AB1,BC1的中點,則下列結(jié)論中不成立的是( )
![]()
A.EF與BB1垂直B.EF⊥平面BDD1B1
C.EF與C1D所成的角為45°D.EF∥平面A1B1C1D1
查看答案和解析>>
科目: 來源: 題型:
【題目】已知
是橢圓
:
的左焦點,O為坐標(biāo)原點,
為橢圓上的點.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若點
都在橢圓
上,且
中點
在線段
(不包括端點)上,求
面積的最大值,及此時直線
的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】十二生肖的座位次序如下圖1,中間的狗、豬位置固定不動,其他生肖動物每次順時針轉(zhuǎn)動一格,即第一次轉(zhuǎn)動后的座位次序如下圖2,這樣繼續(xù)進行下去,那么第2019次換座位后,鼠的座位對應(yīng)的編號為________.
圖一:
鼠1 | 牛2 | 虎3 | 兔4 |
雞10 | 狗11 | 豬12 | 龍5 |
猴9 | 羊8 | 馬7 | 蛇6 |
圖二:
雞1 | 鼠2 | 牛3 | 虎4 |
猴10 | 狗11 | 豬12 | 兔5 |
羊9 | 馬8 | 蛇7 | 龍6 |
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正三角形ABE與菱形ABCD所在的平面互相垂直,
,
,M是AB的中點.
![]()
(1)求證:
;
(2)求二面角
的余弦值;
(3)在線段EC上是否存在點P,使得直線AP與平面ABE所成的角為
,若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】一個圓經(jīng)過點
,且和直線
相切.
(1)求動圓圓心的軌跡
的方程;
(2)已知點
,設(shè)不垂直于
軸的直線
與軌跡
交于不同的兩點
,若
軸是
的角平分線,證明直線
過定點.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com