科目: 來源: 題型:
【題目】在直三棱柱
中,
為正三角形,點(diǎn)
在棱
上,且
,點(diǎn)
、
分別為棱
、
的中點(diǎn).
![]()
(1)證明:
平面
;
(2)若
,求直線
與平面
所成的角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】電動摩托車的續(xù)航里程,是指電動摩托車在蓄電池滿電量的情況下一次能行駛的最大距離.為了解A,B兩個不同型號電動摩托車的續(xù)航里程,現(xiàn)從某賣場庫存電動摩托車中隨機(jī)抽取A,B兩個型號的電動摩托車各5臺,在相同條件下進(jìn)行測試,統(tǒng)計(jì)結(jié)果如下:
電動摩托車編號 | 1 | 2 | 3 | 4 | 5 |
A型續(xù)航里程(km) | 120 | 125 | 122 | 124 | 124 |
B型續(xù)航里程(km) | 118 | 123 | 127 | 120 | a |
已知A,B兩個型號被測試電動摩托車?yán)m(xù)航里程的平均值相等.
(1)求a的值;
(2)求A型號被測試電動摩托車?yán)m(xù)航里程標(biāo)準(zhǔn)差的大。
(3)從被測試的電動摩托車中隨機(jī)抽取A,B型號電動摩托車各1臺,求至少有1臺的續(xù)航里程超過122km的概率.
(注:n個數(shù)據(jù)
,的方差
,其中
為數(shù)據(jù)
的平均數(shù))
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐
中,
,∠ABD=∠ADB.
![]()
(Ⅰ)求證:
;
(Ⅱ)若
,
,
,
,
,點(diǎn)
為
的中點(diǎn),求平面
切割三棱錐
得到的上下兩個幾何體的體積之比.
查看答案和解析>>
科目: 來源: 題型:
【題目】命題
方程
表示雙曲線;命題
不等式
的解集是
.
為假,
為真,求
的取值范圍.
【答案】![]()
【解析】試題分析:由命題
方程
表示雙曲線,求出
的取值范圍,由命題
不等式
的解集是
,求出
的取值范圍,由
為假,
為真,得出
一真一假,分兩種情況即可得出
的取值范圍.
試題解析:
真 ![]()
,
真
或
![]()
∴![]()
真
假 ![]()
假
真 ![]()
∴
范圍為![]()
【題型】解答題
【結(jié)束】
18
【題目】如圖,設(shè)
是圓
上的動點(diǎn),點(diǎn)
是
在
軸上的投影,
為
上一點(diǎn),且
.
![]()
(1)當(dāng)
在圓上運(yùn)動時(shí),求點(diǎn)
的軌跡
的方程;
(2)求過點(diǎn)
且斜率為
的直線被
所截線段的長度.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形
中,
分別在
上,且
,沿
將四邊形
折成四邊形
,使點(diǎn)
在平面
上的射影
在直線
上
![]()
![]()
(1)求證:平面
平面
;
(2)求證:
平面
;
(3)求二面角
的正弦值
查看答案和解析>>
科目: 來源: 題型:
【題目】2018年10月28日,重慶公交車墜江事件震驚全國,也引發(fā)了廣大群眾的思考——如何做一個文明的乘客.全國各地大部分社區(qū)組織居民學(xué)習(xí)了文明乘車規(guī)范.
社區(qū)委員會針對居民的學(xué)習(xí)結(jié)果進(jìn)行了相關(guān)的問卷調(diào)查,并將得到的分?jǐn)?shù)整理成如圖所示的統(tǒng)計(jì)圖.
![]()
(1)求得分在
上的頻率;
(2)求
社區(qū)居民問卷調(diào)查的平均得分的估計(jì)值;(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)
(3)由于部分居民認(rèn)為此項(xiàng)學(xué)習(xí)不具有必要性,
社區(qū)委員會對社區(qū)居民的學(xué)習(xí)態(tài)度作調(diào)查,所得結(jié)果統(tǒng)計(jì)如下:(表中數(shù)據(jù)單位:人)
認(rèn)為此項(xiàng)學(xué)習(xí)十分必要 | 認(rèn)為此項(xiàng)學(xué)習(xí)不必要 | |
50歲以上 | 400 | 600 |
50歲及50歲以下 | 800 | 200 |
根據(jù)上述數(shù)據(jù),計(jì)算是否有
的把握認(rèn)為居民的學(xué)習(xí)態(tài)度與年齡相關(guān).
附:
,其中
.
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】在極坐標(biāo)系中,曲線
的極坐標(biāo)方程為
.以極點(diǎn)為原點(diǎn),極軸為
軸的正半軸建立平面直角坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù)).
(1)若
,求曲線
的直角坐標(biāo)方程以及直線
的極坐標(biāo)方程;
(2)設(shè)點(diǎn)
,曲線
與直線
交于兩點(diǎn),求
的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在極坐標(biāo)系中,曲線
的極坐標(biāo)方程為
.以極點(diǎn)為原點(diǎn),極軸為
軸的正半軸建立平面直角坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù)).
(1)若
,求曲線
的直角坐標(biāo)方程以及直線
的極坐標(biāo)方程;
(2)設(shè)點(diǎn)
,曲線
與直線
交于兩點(diǎn),求
的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com