科目: 來(lái)源: 題型:
【題目】已知函數(shù)
圖象過(guò)點(diǎn)
,且在區(qū)間
上單調(diào).又
的圖象向左平移
個(gè)單位之后與原來(lái)的圖象重合,當(dāng)
,且
時(shí),
,則
( )
A.
B.
C.1D.-1
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在四棱錐P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E為PD的中點(diǎn),點(diǎn)F在PC上,且
.
(Ⅰ)求證:CD⊥平面PAD;
(Ⅱ)求二面角F–AE–P的余弦值;
(Ⅲ)設(shè)點(diǎn)G在PB上,且
.判斷直線AG是否在平面AEF內(nèi),說(shuō)明理由.
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】秉承提升學(xué)生核心素養(yǎng)的理念,學(xué)校開(kāi)設(shè)以提升學(xué)生跨文化素養(yǎng)為核心的多元文化融合課程.選某藝術(shù)課程的學(xué)生唱歌、跳舞至少會(huì)一項(xiàng),已知會(huì)唱歌的有
人,會(huì)跳舞的有
人,現(xiàn)從中選
人,設(shè)
為選出的人中既會(huì)唱歌又會(huì)跳舞的人數(shù),且![]()
(1)求選該藝術(shù)課程的學(xué)生人數(shù);
(2)寫(xiě)出
的概率分布列并計(jì)算
.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)
, 則: (1)曲線
的斜率為
的切線方程為__________;
(2)設(shè)
,記
在區(qū)間
上的最大值為
.當(dāng)
最小時(shí),
的值為__________.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=a(x﹣1)﹣lnx(a∈R),g(x)=(1﹣x)ex.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若對(duì)任意給定的x0∈[﹣1,1],在區(qū)間(0,e]上總存在兩個(gè)不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】武漢某科技公司為提高市場(chǎng)銷售業(yè)績(jī),現(xiàn)對(duì)某產(chǎn)品在部分營(yíng)銷網(wǎng)點(diǎn)進(jìn)行試點(diǎn)促銷活動(dòng).現(xiàn)有兩種活動(dòng)方案,在每個(gè)試點(diǎn)網(wǎng)點(diǎn)僅采用一種活動(dòng)方案,經(jīng)統(tǒng)計(jì),2018年1月至6月期間,每件產(chǎn)品的生產(chǎn)成本為10元,方案1中每件產(chǎn)品的促銷運(yùn)作成本為5元,方案2中每件產(chǎn)品的促銷運(yùn)作成本為2元,其月利潤(rùn)的變化情況如圖①折線圖所示.
![]()
(1)請(qǐng)根據(jù)圖①,從兩種活動(dòng)方案中,為該公司選擇一種較為有利的活動(dòng)方案(不必說(shuō)明理由);
(2)為制定本年度該產(chǎn)品的銷售價(jià)格,現(xiàn)統(tǒng)計(jì)了8組售價(jià)xi(單位:元/件)和相應(yīng)銷量y(單位:件)(i=1,2,…8)并制作散點(diǎn)圖(如圖②),觀察散點(diǎn)圖可知,可用線性回歸模型擬合y與x的關(guān)系,試求y關(guān)于x的回歸方程(系數(shù)精確到整數(shù));
參考公式及數(shù)據(jù):
40,
660,
xiyi=206630,
x
12968,
,
,
(3)公司策劃部選
1200lnx+5000和
═
x3+1200兩個(gè)模型對(duì)銷量與售價(jià)的關(guān)系進(jìn)行擬合,現(xiàn)得到以下統(tǒng)計(jì)值(如表格所示):
|
| |
| 52446.95 | 122.89 |
| 124650 | |
相關(guān)指數(shù) | R | R |
相關(guān)指數(shù):R2=1
.
(i)試比較R12,R22的大。ńo出結(jié)果即可),并由此判斷哪個(gè)模型的擬合效果更好;
(ii)根據(jù)(1)中所選的方案和(i)中所選的回歸模型,求該產(chǎn)品的售價(jià)x定為多少時(shí),總利潤(rùn)z可以達(dá)到最大?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知A(0,1),B(0,﹣1),M(﹣1,0),動(dòng)點(diǎn)P為曲線C上任意一點(diǎn),直線PA,PB的斜率之積為
,動(dòng)直線l與曲線C相交于不同兩點(diǎn)Q(x1,y1),R(x2,y2),其中y1>0,y2>0且滿足
.
(1)求曲線C的方程;
(2)若直線l與x軸相交于一點(diǎn)N,求N點(diǎn)坐標(biāo).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊長(zhǎng)為a,∠D=60°,點(diǎn)H為DC邊中點(diǎn),現(xiàn)以線段AH為折痕將△DAH折起使得點(diǎn)D到達(dá)點(diǎn)P的位置且平面PHA⊥平面ABCH,點(diǎn)E,F分別為AB,AP的中點(diǎn).
![]()
(1)求證:平面PBC∥平面EFH;
(2)若三棱錐P﹣EFH的體積等于
,求a的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com