欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網(wǎng) > 試題搜索列表 >在平面直角坐標系中.點A的坐標是若點A在y軸上.求a的值及點A的坐標. (2)若點A到x軸的距離與到y(tǒng)軸的距離相等,求a的值及點A的坐標.

在平面直角坐標系中.點A的坐標是若點A在y軸上.求a的值及點A的坐標. (2)若點A到x軸的距離與到y(tǒng)軸的距離相等,求a的值及點A的坐標.答案解析

科目:czsx 來源: 題型:解答題

18.在平面直角坐標系中,點A的坐標是(3a-5,a+1)
(1)若點A在y軸上,求a的值及點A的坐標.
(2)若點A到x軸的距離與到y(tǒng)軸的距離相等,且點A在x軸的上方,求a的值及點A的坐標.

查看答案和解析>>

科目:czsx 來源:2015-2016學年山東省濟寧市微山縣七年級下期中數(shù)學試卷(解析版) 題型:解答題

在平面直角坐標系中,點A的坐標是(3a﹣5,a+1)

(1)若點A在y軸上,求a的值及點A的坐標.

(2)若點A到x軸的距離與到y(tǒng)軸的距離相等;求a的值及點A的坐標.

查看答案和解析>>

科目:czsx 來源: 題型:

在平面直角坐標系xOy中,已知直線l1經(jīng)過點A(-2,0)和點B(0,
2
3
3
),直線l2的函數(shù)表達式為y=-
3
3
x+
4
3
3
,l1與l2相交于點P.⊙C是一個動圓,圓心C在直線l1上運動,設(shè)圓心C的橫坐標是a.過點C作CM⊥x軸,垂足是點M.
(1)填空:直線l1的函數(shù)表達式是
 
,交點P的坐標是
 
,∠FPB的度數(shù)是
 
°;
(2)當⊙C和直線l2相切時,請證明點P到直線的距離CM等于⊙C的半徑R,并寫出R=3
2
-2時a的值;
(3)當⊙C和直線l2不相離時,已知⊙C的半徑R=3
2
-2,記四邊形NMOB的面積為S(其中點N精英家教網(wǎng)是直線CM與l2的交點).S是否存在最大值?若存在,求出這個最大值及此時a的值;若不存在,請說明理由.

查看答案和解析>>

科目:czsx 來源: 題型:

在平面直角坐標系xOy中,反比例函數(shù)y=
4
x
的圖象與拋物線y=x2+(9m+4)x+m-精英家教網(wǎng)1交于點A(3,n).
(1)求n的值及拋物線的解析式;
(2)過點A作直線BC,交x軸于點B,交反比例函數(shù)y=
4
x
(x>0)的圖象于點C,且AC=2AB,求B、C兩點的坐標;
(3)在(2)的條件下,若點P是拋物線對稱軸上的一點,且點P到x軸和直線BC的距離相等,求點P的坐標.

查看答案和解析>>

科目:czsx 來源: 題型:044

在平面直角坐標系xOy中,已知直線l1經(jīng)過點A(-2,0)和點B(0),直線l2的函數(shù)表達式為,l1l2相交于點P.⊙C是一個動圓,圓心C在直線l1上運動,設(shè)圓心C的橫坐標是a.過點CCMx軸,垂足是點M

(1) 填空:直線l1的函數(shù)表達式是 ,交點P的坐標是 ,∠FPB的度數(shù)是 ;

(2) 當⊙C和直線l2相切時,請證明點P到直線CM的距離等于⊙C的半徑R,并寫出R=a的值.

(3) 當⊙C和直線l2不相離時,已知⊙C的半徑R=,記四邊形NMOB的面積為S(其中點N是直線CMl2的交點)S是否存在最大值?若存在,求出這個最大值及此時a的值;若不存在,請說明理由.

查看答案和解析>>

科目:czsx 來源:新課程 新理念 新思維·訓練編·數(shù)學 九年級下冊(蘇教版) 蘇教版 題型:059

在平面直角坐標系xOy中,已知直線l1經(jīng)過點A(-2,0)和點B(0,),直線l2的函數(shù)表達式為=-x+,l1l2相交于點P.⊙C是一個動圓,圓心C在直線l1上運動,設(shè)圓心C的橫坐標是a.過點C作CM⊥x軸,垂足是點M.

(1)填空:直線l1的函數(shù)表達式是________,交點P的坐標是________,∠FPB的度數(shù)是________;

(2)當⊙C和直線l2相切時,請證明點P到直線CM的距離等于⊙C的半徑R,并寫出R=-2時a的值.

(3)當⊙C和直線l2不相離時,已知⊙C的半徑R=-2,記四邊形NMOB的面積為S(其中點N是直線CM與l2的交點).S是否存在最大值?若存在,求出這個最大值及此時a的值;若不存在,請說明理由.

查看答案和解析>>

科目:czsx 來源:2006年浙江省初中畢業(yè)生學業(yè)考試數(shù)學試題 題型:059

在平面直角坐標系xOy中,已知直線l1經(jīng)過點A(-2,0)和點B(0,),直線l2的函數(shù)表達式為y=-x+,l1l2相交于點P.⊙C是一個動圓,圓心C在直線l1上運動,設(shè)圓心C的橫坐標是a.過點C作CM⊥x軸,垂足是點M.

(1)填空:直線l1的函數(shù)表達式是________,交點P的坐標是________,∠FPB的度數(shù)是________;

(2)當⊙C和直線l2相切時,請證明點P到直線的距離CM等于⊙C的半徑R,并寫出R=時a的值.

(3)當⊙C和直線l2不相離時,已知⊙C的半徑R=,記四邊形NMOB的面積為S(其中點N是直線CM與l2的交點).S是否存在最大值?若存在,求出這個最大值及此時a的值;若不存在,請說明理由.

查看答案和解析>>

科目:czsx 來源: 題型:解答題

在平面直角坐標系xOy中,反比例函數(shù)數(shù)學公式的圖象與拋物線y=x2+(9m+4)x+m-1交于點A(3,n).
(1)求n的值及拋物線的解析式;
(2)過點A作直線BC,交x軸于點B,交反比例函數(shù)數(shù)學公式(x>0)的圖象于點C,且AC=2AB,求B、C兩點的坐標;
(3)在(2)的條件下,若點P是拋物線對稱軸上的一點,且點P到x軸和直線BC的距離相等,求點P的坐標.

查看答案和解析>>

科目:czsx 來源:2012屆湖北省蘄春縣劉河中學九年級上學期期中考試數(shù)學卷(B) 題型:解答題

在平面直角坐標系xOy中,已知直線l1經(jīng)過點A(-2,0)和點B(0,),直線l2的函數(shù)表達式為,l1與l2相交于點P.⊙C是一個動圓,圓心C在直線l1上運動,設(shè)圓心C的橫坐標是a.過點C作CM⊥x軸,垂足是點M.
【小題1】求直線l1的函數(shù)表達式;
【小題2】 當⊙C和直線l2相切時,請證明點P到直線CM的距離等于⊙C的半徑R,并寫出R=時a的值.
【小題3】當⊙C和直線l2不相離時,已知⊙C的半徑R=,記四邊形NMOB的面積為S(其中點N是直線CM與l2的交點).S是否存在最大值?若存在,求出這個最大值及此時a的值;若不存在,請說明理由.

查看答案和解析>>

科目:czsx 來源:2010-2011學年北京市門頭溝區(qū)九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

在平面直角坐標系xOy中,反比例函數(shù)的圖象與拋物線y=x2+(9m+4)x+m-1交于點A(3,n).
(1)求n的值及拋物線的解析式;
(2)過點A作直線BC,交x軸于點B,交反比例函數(shù)(x>0)的圖象于點C,且AC=2AB,求B、C兩點的坐標;
(3)在(2)的條件下,若點P是拋物線對稱軸上的一點,且點P到x軸和直線BC的距離相等,求點P的坐標.

查看答案和解析>>

科目:czsx 來源:2011-2012學年湖北省九年級上學期期中考試數(shù)學卷(B) 題型:解答題

在平面直角坐標系xOy中,已知直線l1經(jīng)過點A(-2,0)和點B(0,),直線l2的函數(shù)表達式為,l1與l2相交于點P.⊙C是一個動圓,圓心C在直線l1上運動,設(shè)圓心C的橫坐標是a.過點C作CM⊥x軸,垂足是點M.

 1.求直線l1的函數(shù)表達式;

  2. 當⊙C和直線l2相切時,請證明點P到直線CM的距離等于⊙C的半徑R,并寫出R=時a的值.

 3.當⊙C和直線l2不相離時,已知⊙C的半徑R=,記四邊形NMOB的面積為S(其中點N是直線CM與l2的交點).S是否存在最大值?若存在,求出這個最大值及此時a的值;若不存在,請說明理由.

 

 

 

查看答案和解析>>

科目:gzsx 來源:閘北區(qū)二模 題型:解答題

在平面直角坐標系xOy中,已知曲線C1為到定點F(
3
2
,
1
2
)
的距離與到定直線l1
3
x+y+2=0
的距離相等的動點P的軌跡,曲線C2是由曲線C1繞坐標原點O按順時針方向旋轉(zhuǎn)30°形成的.
(1)求曲線C1與坐標軸的交點坐標,以及曲線C2的方程;
(2)過定點M0(m,0)(m>2)的直線l2交曲線C2于A、B兩點,已知曲線C2上存在不同的兩點C、D關(guān)于直線l2對稱.問:弦長|CD|是否存在最大值?若存在,求其最大值;若不存在,請說明理由.

查看答案和解析>>

科目:czsx 來源:不詳 題型:解答題

在平面直角坐標系xOy中,已知直線l1經(jīng)過點A(-2,0)和點B(0,),直線l2的函數(shù)表達式為,l1與l2相交于點P.⊙C是一個動圓,圓心C在直線l1上運動,設(shè)圓心C的橫坐標是a.過點C作CM⊥x軸,垂足是點M.
小題1:求直線l1的函數(shù)表達式;
小題2: 當⊙C和直線l2相切時,請證明點P到直線CM的距離等于⊙C的半徑R,并寫出R=時a的值.
小題3:當⊙C和直線l2不相離時,已知⊙C的半徑R=,記四邊形NMOB的面積為S(其中點N是直線CM與l2的交點).S是否存在最大值?若存在,求出這個最大值及此時a的值;若不存在,請說明理由.

查看答案和解析>>

科目:czsx 來源: 題型:

在平面直角坐標系xOy中,已知直線l1經(jīng)過點A(-2,0)和點B(0,),直線l2的函數(shù)表達式為,l1與l2相交于點P.⊙C是一個動圓,圓心C在直線l1上運動,設(shè)圓心C的橫坐標是a.過點C作CM⊥x軸,垂足是點M.

 1.求直線l1的函數(shù)表達式;

  2. 當⊙C和直線l2相切時,請證明點P到直線CM的距離等于⊙C的半徑R,并寫出R=時a的值.

 3.當⊙C和直線l2不相離時,已知⊙C的半徑R=,記四邊形NMOB的面積為S(其中點N是直線CM與l2的交點).S是否存在最大值?若存在,求出這個最大值及此時a的值;若不存在,請說明理由.

 

 

 

查看答案和解析>>

科目:gzsx 來源: 題型:

(2013•閘北區(qū)二模)在平面直角坐標系xOy中,已知曲線C1為到定點F(
3
2
1
2
)
的距離與到定直線l1
3
x+y+2=0
的距離相等的動點P的軌跡,曲線C2是由曲線C1繞坐標原點O按順時針方向旋轉(zhuǎn)30°形成的.
(1)求曲線C1與坐標軸的交點坐標,以及曲線C2的方程;
(2)過定點M0(m,0)(m>2)的直線l2交曲線C2于A、B兩點,已知曲線C2上存在不同的兩點C、D關(guān)于直線l2對稱.問:弦長|CD|是否存在最大值?若存在,求其最大值;若不存在,請說明理由.

查看答案和解析>>

科目:czsx 來源:不詳 題型:解答題

對于半徑為r的⊙P及一個正方形給出如下定義:若⊙P上存在到此正方形四條邊距離都相等的點,則稱⊙P是該正方形的“等距圓”.如圖1,在平面直角坐標系xOy中,正方形ABCD的頂點A的坐標為(2,4),頂點C、D在x軸上,且點C在點D的左側(cè).
(1)當r=時,
①在P1(0,-3),P2(4,6),P3,2)中可以成為正方形ABCD的“等距圓”的圓心的是_______________;
②若點P在直線上,且⊙P是正方形ABCD的“等距圓”,則點P的坐標為_______________;
(2)如圖2,在正方形ABCD所在平面直角坐標系xOy中,正方形EFGH的頂點F的坐標為(6,2),頂點E、H在y軸上,且點H在點E的上方.
①若⊙P同時為上述兩個正方形的“等距圓”,且與BC所在直線相切,求⊙P 在y軸上截得的弦長;
②將正方形ABCD繞著點D旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,線段HF上沒有一個點能成為它的“等距圓”的圓心,則r的取值范圍是_______________.

查看答案和解析>>

科目:czsx 來源:2014年北京市海淀區(qū)中考二模數(shù)學試卷(解析版) 題型:解答題

對于半徑為rP及一個正方形給出如下定義:若P上存在到正方形四邊距離都相等點,P是正方形的“等距.如圖1,在平面直角坐標系xOy中,正方形ABCD的頂點A坐標為(2,4),頂點C、D在x軸上,且點C在點D的左側(cè).

(1)當r=時,

在P1(0,-3),P24,6),P32)中可以成為正方形ABCD的“等距圓”的圓心的是_______________;

若點P在直線上,且P是正方形ABCD的“等距圓”,則點P坐標為_______________

(2)如圖2,在正方形ABCD所在平面直角坐標系xOy中,正方形EFGH的頂點F的坐標為(6,2),頂點E、Hy軸上,且點H在點E的上方.

P同時為上述兩個正方形的“等距圓”,且與BC所在直線相切,求P 在y軸上截得的弦長;

將正方形ABCD繞著點D旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,線段HF上沒有一個點能成為它的“等距圓”的圓心,則r的取值范圍是_______________.

 

查看答案和解析>>

科目:czsx 來源: 題型:

對于半徑為r的⊙P及一個正方形給出如下定義:若⊙P上存在到此正方形四條邊距離都相等的點,則稱⊙P是該正方形的“等距圓”.如圖1,在平面直角坐標系xOy中,正方形ABCD的頂點A的坐標為(2,4),頂點C、D在x軸上,且點C在點D的左側(cè).
(1)當r=4
2
時,
①在P1(0,-3),P2(4,6),P34
2
,2)中可以成為正方形ABCD的“等距圓”的圓心的是
 
;
②若點P在直線y=-x+2上,且⊙P是正方形ABCD的“等距圓”,則點P的坐標為
 

(2)如圖2,在正方形ABCD所在平面直角坐標系xOy中,正方形EFGH的頂點F的坐標為(6,2),頂點E、H在y軸上,且點H在點E的上方.
①若⊙P同時為上述兩個正方形的“等距圓”,且與BC所在直線相切,求⊙P在y軸上截得的弦長;
②將正方形ABCD繞著點D旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,線段HF上沒有一個點能成為它的“等距圓”的圓心,則r的取值范圍是多少?

查看答案和解析>>

科目:czsx 來源: 題型:

如圖,現(xiàn)有兩塊全等的直角三角形紙板Ⅰ,Ⅱ,它們兩直角邊的長分別為1和2.將它們分別放置于平面直角坐標系中的△AOB,△COD處,直角邊OB,OD在x軸上.一直尺精英家教網(wǎng)從上方緊靠兩紙板放置,讓紙板Ⅰ沿直尺邊緣平行移動.當紙板Ⅰ移動至△PEF處時,設(shè)PE,PF與OC分別交于點M,N,與x軸分別交于點G,H.
(1)求直線AC所對應(yīng)的函數(shù)關(guān)系式;
(2)當點P是線段AC(端點除外)上的動點時,試探究:
①點M到x軸的距離h與線段BH的長是否總相等?請說明理由;
②兩塊紙板重疊部分(圖中的陰影部分)的面積S是否存在最大值?若存在,求出這個最大值及S取最大值時點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:czsx 來源:浙江省杭州市青春中學2012屆九年級中考模擬數(shù)學試題 題型:044

如圖,現(xiàn)有兩塊全等的直角三角形紙板Ⅰ,Ⅱ,它們兩直角邊的長分別為1和2.將它們分別放置于平面直角坐標系中的△AOB,△COD處,直角邊OB,OD在x軸上.一直尺從上方緊靠兩紙板放置,讓紙板Ⅰ沿直尺邊緣平行移動.當紙板Ⅰ移動至△PEF處時,設(shè)PE.PF與OC分別交于點M,N,與x軸分別交于點G,H.

(1)求直線AC所對應(yīng)的函數(shù)關(guān)系式;

(2)當點P是線段AC(端點除外)上的動點時,試探究:

①點M到x軸的距離h與線段BH的長是否總相等?請說明理由;

②兩塊紙板重疊部分(圖中的陰影部分)的面積S是否存在最大值?若存在,求出這個最大值及S取最大值時點P的坐標;若不存在,請說明理由.

查看答案和解析>>