科目:czsx 來源: 題型:單選題
如圖,矩形ABCD中,對角線AC,BD交于點O,E,F(xiàn)分別是邊BC,AD的中點,AB=2,BC=4,一動點P從點B出發(fā),沿著B﹣A﹣D﹣C在矩形的邊上運動,運動到點C停止,點M為圖1中某一定點,設點P運動的路程為x,△BPM的面積為y,表示y與x的函數(shù)關系的圖象大致如圖2所示.則點M的位置可能是圖1中的( )![]()
| A.點C&nbs, | B.點O&nbs, | C.點E&nbs, | D.點F&nbs, |
科目:czsx 來源:2015屆北京市順義區(qū)八年級下學期期末考試數(shù)學試卷(解析版) 題型:選擇題
如圖,矩形ABCD中,對角線AC,BD交于點O,E,F(xiàn)分別是邊BC,AD的中點,AB=2,BC=4,一動點P從點B出發(fā),沿著B﹣A﹣D﹣C在矩形的邊上運動,運動到點C停止,點M為圖1中某一定點,設點P運動的路程為x,△BPM的面積為y,表示y與x的函數(shù)關系的圖象大致如圖2所示.則點M的位置可能是圖1中的( )
![]()
A.點C B.點O C.點E D.點F
科目:czsx 來源: 題型:
| A、點C | B、點O | C、點E | D、點F |
科目:czsx 來源:2014-2015學年北京市延慶縣九年級上學期期末考試數(shù)學試卷(解析版) 題型:選擇題
如圖,矩形ABCD中,對角線AC,BD交于點O,E,F(xiàn)分別是邊BC,AD的中點,AB=3,BC=4,一動點P從點B出發(fā),沿著B﹣A﹣D﹣C在矩形的邊上運動,運動到點C停止,點M為圖1中某一定點,設點P運動的路程為x,△BPM的面積為y,表示y與x的函數(shù)關系的圖象大致如圖2所示.則點M的位置可能是圖1中的( )
![]()
A.點C B.點F C.點D D.點O
科目:czsx 來源: 題型:解答題
科目:czsx 來源: 題型:解答題
科目:czsx 來源: 題型:單選題
如圖,在矩形ABCD中,AB=2cm,BC=4cm,對角線AC,BD相交于點O,點E,F(xiàn)分別從B,C兩點同時出發(fā),以1cm/s的速度分別沿B→C,C→D運動,點F運動到點D時停止,點E運動到點C時停止.設運動時間為t(單位:s),△OEF的面積為S(單位:cm2),則S與t的函數(shù)關系可用圖象表示為( ?。?br />![]()
![]()
科目:czsx 來源:2015屆北京市昌平區(qū)八年級下學期期末考試數(shù)學試卷(解析版) 題型:選擇題
如圖,在矩形ABCD中,AB=2cm,BC=4cm,對角線AC,BD相交于點O,點E,F(xiàn)分別從B,C兩點同時出發(fā),以1cm/s的速度分別沿B→C,C→D運動,點F運動到點D時停止,點E運動到點C時停止.設運動時間為t(單位:s),△OEF的面積為S(單位:cm2),則S與t的函數(shù)關系可用圖象表示為( ?。?/span>
![]()
![]()
科目:czsx 來源: 題型:
| A、 |
| B、 |
| C、 |
| D、 |
科目:czsx 來源: 題型:
科目:czsx 來源: 題型:
如圖,在矩形ABCD中,AB=4,BC=3,點O為對角線BD的中點,點P從點A出發(fā),沿折線AD﹣DO﹣OC以每秒1個單位長度的速度向終點C運動,當點P與點A不重合時,過點P作PQ⊥AB于點Q,以PQ為邊向右作正方形PQMN,設正方形PQMN與△ABD重疊部分圖形的面積為S(平方單位),點P運動的時間為t(秒).
(1)求點N落在BD上時t的值;
(2)直接寫出點O在正方形PQMN內(nèi)部時t的取值范圍;
(3)當點P在折線AD﹣DO上運動時,求S與t之間的函數(shù)關系式;
(4)直接寫出直線DN平分△BCD面積時t的值.
![]()
科目:czsx 來源: 題型:
科目:czsx 來源: 題型:
如圖1,矩形ABCD中,對角線AC,BD交于點O,E,F分別是邊BC,AD的中點,AB=2,BC=4,一動點P從點B出發(fā),沿著B-A-D-C在矩形的邊上運動,運動到點C停止,點M為圖1中某一定點,設點P運動的路程為x,△BPM的面積為y,表示y與x的函數(shù)關系的圖象大致如圖2所示.則點M的位置可能是圖1中的( )
A.點C B.點O C.點E D.點F
科目:czsx 來源: 題型:
如圖,在矩形ABCD中,AD=acm,AB=bcm(a>b>4),半徑為2cm的⊙O在矩形內(nèi)且與AB、AD均相切.現(xiàn)有動點P從A點出發(fā),在矩形邊上沿著A→B→C→D的方向勻速移動,當點P到達D點時停止移動;⊙O在矩形內(nèi)部沿AD向右勻速平移,移動到與CD相切時立即沿原路按原速返回,當⊙O回到出發(fā)時的位置(即再次與AB相切)時停止移動.已知點P與⊙O同時開始移動,同時停止移動(即同時到達各自的終止位置)
(1)如圖①,點P從A→B→C→D,全程共移動了 cm(用含a、b的代數(shù)式表示);
(2)如圖①,已知點P從A點出發(fā),移動2s到達B點,繼續(xù)移動3s,到達BC的中點.若點P與⊙O的移動速度相等,求在這5s時間內(nèi)圓心O移動的距離;
(3)如圖②,已知a=20,b=10.是否存在如下情形:當⊙O到達⊙O1的位置時(此時圓心O1在矩形對角線BD上),DP與⊙O1恰好相切?請說明理由.
科目:czsx 來源:2016屆江蘇省江陰市九年級下學期第一次月考數(shù)學試卷(解析版) 題型:解答題
如圖,在矩形ABCD中,AD=acm,AB=bcm(a>b>4),半徑為2cm的⊙O在矩形內(nèi)且與AB、AD均相切,現(xiàn)有動點P從A點出發(fā),在矩形邊上沿著A→B→C→D的方向勻速移動,當點P到達D點時停止移動.⊙O在矩形內(nèi)部沿AD向右勻速平移,移動到與CD相切時立即沿原路按原速返回,當⊙O回到出發(fā)時的位置(即再次與AB相切)時停止移動,已知點P與⊙O同時開始移動,同時停止移動(即同時到達各自的終止位置).
![]()
(1)如圖①,點P從A→B→C→D,全程共移動了 cm(用含a、b的代數(shù)式表示);
(2)如圖①,已知點P從A點出發(fā),移動2s到達B點,繼續(xù)移動3s,到達BC的中點,若點P與⊙O的移動速度相等,求在這5s時間內(nèi)圓心O移動的距離;
(3)如圖②,已知a=20,b=10,是否存在如下情形:當⊙O到達⊙O1的位置時(此時圓心O1在矩形對角線BD上),DP與⊙O1恰好相切?請說明理由.
科目:czsx 來源:2016屆江蘇省江陰市九年級下學期第一次月考數(shù)學試卷(解析版) 題型:解答題
如圖,在矩形ABCD中,AD=acm,AB=bcm(a>b>4),半徑為2cm的⊙O在矩形內(nèi)且與AB、AD均相切.現(xiàn)有動點P從A點出發(fā),在矩形邊上沿著A→B→C→D的方向勻速移動,當點P到達D點時停止移動;⊙O在矩形內(nèi)部沿AD向右勻速平移,移動到與CD相切時立即沿原路按原速返回,當⊙O回到出發(fā)時的位置(即再次與AB相切)時停止移動.已知點P與⊙O同時開始移動,同時停止移動(即同時到達各自的終止位置).
![]()
(1)如圖①,點P從A→B→C→D,全程共移動了 cm(用含a、b的代數(shù)式表示);
(2)如圖①,已知點P從A點出發(fā),移動2s到達B點,繼續(xù)移動3s,到達BC的中點.若點P與⊙O的移動速度相等,求在這5s時間內(nèi)圓心O移動的距離;
(3)如圖②,已知a=20,b=10.是否存在如下情形:當⊙O到達⊙O1的位置時(此時圓心O1在矩形對角線BD上),DP與⊙O1恰好相切?請說明理由.
科目:czsx 來源:2016年初中畢業(yè)升學考試(江蘇蘇州卷)數(shù)學(解析版) 題型:解答題
如圖,在矩形ABCD中,AB=6cm,AD=8cm,點P從點B出發(fā),沿對角線BD向點D勻速運動,速度為4cm/s,過點P作PQ⊥BD交BC于點Q,以PQ為一邊作正方形PQMN,使得點N落在射線PD上,點O從點D出發(fā),沿DC向點C勻速運動,速度為3m/s,以O為圓心,0.8cm為半徑作⊙O,點P與點O同時出發(fā),設它們的運動時間為t(單位:s)(0<t<
).
![]()
(1)如圖1,連接DQ平分∠BDC時,t的值為 ;
(2)如圖2,連接CM,若△CMQ是以CQ為底的等腰三角形,求t的值;
(3)請你繼續(xù)進行探究,并解答下列問題:
①證明:在運動過程中,點O始終在QM所在直線的左側;
②如圖3,在運動過程中,當QM與⊙O相切時,求t的值;并判斷此時PM與⊙O是否也相切?說明理由.
科目:czsx 來源:2017屆江蘇無錫江陰市長涇片九年級上期中數(shù)學試卷(解析版) 題型:解答題
如圖,在矩形ABCD中,AB=6cm,AD=8cm,點P從點B出發(fā),沿對角線BD向點D勻速運動,速度為4cm/s,過點P作PQ⊥BD交BC于點Q,以PQ為一邊作正方形PQMN,使得點N落在射線PD上,點O從點D出發(fā),沿DC向點C勻速運動,速度為3m/s,以O為圓心,0.8cm為半徑作⊙O,點P與點O同時出發(fā),設它們的運動時間為t(單位:s)(0<t<
).
(1)如圖1,連接DQ平分∠BDC時,t的值為 ;
(2)如圖2,連接CM,若△CMQ是以CQ為底的等腰三角形,求t的值;
(3)請你繼續(xù)進行探究,并解答下列問題:
①證明:在運動過程中,點O始終在QM所在直線的左側;
②如圖3,在運動過程中,當QM與⊙O相切時,求t的值;并判斷此時PM與⊙O是否也相切?說明理由.
![]()
科目:czsx 來源:2017屆江蘇無錫惠山區(qū)九年級上期末數(shù)學試卷(解析版) 題型:解答題
如圖,在矩形ABCD中,AB=6cm,AD=8cm,點P從點B出發(fā),沿對角線BD向點D勻速運動,速度為4cm/s,過點P作PQ⊥BD交BC于點Q,以PQ為一邊作正方形PQMN,使得點N落在射線PD上,點O從點D出發(fā),沿DC向點C勻速運動,速度為3m/s,以O為圓心,0.8cm為半徑作⊙O,點P與點O同時出發(fā),設它們的運動時間為t(單位:s)(0<t<
).
![]()
(1)如圖1,連接DQ平分∠BDC時,t的值為 ;
(2)如圖2,連接CM,若△CMQ是以CQ為底的等腰三角形,求t的值;
(3)在運動過程中,當直線MN與⊙O相切時,求t的值.
科目:czsx 來源: 題型:解答題
國際學校優(yōu)選 - 練習冊列表 - 試題列表
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com