欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(3)設函數時.求證: 查看更多

 

題目列表(包括答案和解析)

設函數

(1)求證:不論a為何實數f(x)總為增函數;

(2)確定a的值,使f(x)為奇函數及此時f(x)的值域.

查看答案和解析>>

設函數y=f(x)定義在R上,對于任意實數m,n,恒有f(m+n)=f(m)•f(n),且當x>0時,0<f(x)<1
(1)求證:f(0)=1且當x<0時,f(x)>1
(2)求證:f(x)在R上是減函數;
(3)設集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求實數a的取值范圍.

查看答案和解析>>

設函數f(x)=x+
alnxx
,其中a為常數.
(1)證明:對任意a∈R,y=f(x)的圖象恒過定點;
(2)當a=-1時,判斷函數y=f(x)是否存在極值?若存在,證明你的結論并求出所有極值;若不存在,說明理由.

查看答案和解析>>

設函數f(x)=|1-
1x
|,x>0

(1)證明:當0<a<b,且f(a)=f(b)時,ab>1;
(2)點P (x0,y0) (0<x0<1 )在曲線y=f(x)上,求曲線在點P處的切線與x軸和y軸的正向所圍成的三角形面積表達式(用x0表達).

查看答案和解析>>

設函數f(x)=x-m(x+1)ln(x+1),(x>-1,m≥0)
(1)求f(x)的單調區(qū)間;
(2)當m=1時,若直線y=t與函數f(x)在[-
12
,1]
上的圖象有兩個交點,求實數t的取值范圍;
(3)證明:當a>b>0時,(1+a)b<(1+b)a

查看答案和解析>>

 

一、

ABCBA  CDB

二、

9.―2       10.4      11.16      12.36       13.   

14.    15.64

三、

16.解:(1)

,

…………………………2分

………………4分

取得最大值為,

…………………………6分

(2)設內角A、B、C的對邊分別為a、b、c

由(1)知:

由余弦定理得:

……………………8分

,

      

       當且僅當    12分

17.解:記事件A、B、C分別表示小明在甲、乙、丙三家公司面試合格,則

      

   (I)三家公司至少有一家面試合格的概率為:

      

       在三家公司至少有一家面試合格的概率為0.96.       6分

   (II)任兩家公司至少有一家面試合格的概率等價于在三家公司至少有兩家面試合格的概率,

      

             8分

      

       在任意兩家公司至少有一家面試合格的概率為0.7        12分

18.解 :(I)D1在平面ABCD上的射影為O,

  •              2分

           點O為DC的中點,DC=2,

           OC=1.

           又

           同理

          

           平面D1AO.      4分

       (II)平面ABCD,

               

           又平面D1DO.

           ,

          

           在平面D1DO內,作

           垂足為H,則平面ADD1A1

           線段OH的長為點O到平面ADD1A1的距離.       6分

           平面ABCD,

           在平面ABCD上的射影為DO.

           為側棱DD1與底面ABCD所成的角,

          

           在

           即點O到平面ADD1A1的距離為    8分

    <source id="ai022"><menu id="ai022"></menu></source>
      <samp id="ai022"><object id="ai022"></object></samp>
    •        平面ABCD,

            

             又平面AOD1,

             又

             為二面角C―AD1―O的平面角      10分

             在

            

             在

            

             取D1C的中點E,連結AE,

             則

            

            

             在

             二面角C―AD1―O的大小為      12分

      19.解:(I)

                 3分

         (II)因為

            

             歸納得

             則     5分

            

            

                   7分

         (III)當

                   9分

             則

            

                    13分

      20.解:(I)設

            

            

                    3分

             代入為P點的軌 跡方程.

             當時,P點的軌跡是圓.     6分

         (II)由題設知直線的方程為,

             設

             聯立方程組

             消去     8分

      * 方程組有兩個不等解,

            

            

             而

                 10分

             當

             當

             當

             綜上,      13分

      21.解:(1)

                1分

             依題意有

            

             解得

                  4分

         (2).

             依題意,是方程的兩個根,

            

            

            

                     6分

             設

             由;

             由

             所以函數在區(qū)間上是增函數,在區(qū)間[4,6]上是減函數.

             有極大值為96,

             上的最大值為96.

                    9分

         (III)的兩根,

             .

            

             ∴

      =          11分

             ∵,

            

             即

            

             成立          13分