分析 (1)由△ABC是等腰直角三角形,得到AC=BC,∠FCB=∠ECA=90°,由于AC⊥BE,BD⊥AE,根據(jù)垂直的定義得到∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,由于∠CFB=∠AFD,于是得到∠CBF=∠CAE,證得△BCF≌△ACE,得出AE=BF,由于BE=BA,BD⊥AE,于是得到AD=ED,即AE=2AD,即可得到結(jié)論;
(2)由(1)知△BCF≌△ACE,推出CF=CE=$\sqrt{2}$,在Rt△CEF中,EF=$\sqrt{C{E}^{2}+C{F}^{2}}$=2,由于BD⊥AE,AD=ED,求得AF=FE=2,于是結(jié)論即可.
解答 (1)證明:∵△ABC是等腰直角三角形,
∴AC=BC,∴∠FCB=∠ECA=90°,
∵AC⊥BE,BD⊥AE,
∴∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,
∵∠CFB=∠AFD,
∴∠CBF=∠CAE,
在△BCF與△ACE中,$\left\{\begin{array}{l}{∠FCB=∠ECA}\\{AC=BC}\\{∠CBF=∠CAE}\end{array}\right.$,
∴△BCF≌△ACE,
∴AE=BF,
∵BE=BA,BD⊥AE,
∴AD=ED,即AE=2AD,
∴BF=2AD;
(2)由(1)知△BCF≌△ACE,
∴CF=CE=$\sqrt{2}$,
∴在Rt△CEF中,EF=$\sqrt{C{E}^{2}+C{F}^{2}}$=2,
∵BD⊥AE,AD=ED,
∴AF=FE=2,
∴AC=AF+CF=2+$\sqrt{2}$.
點(diǎn)評(píng) 本題考查了全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),勾股定理,熟練掌握全等三角形的判定和性質(zhì)定理是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 它的圖象分布在第一、三象限 | B. | 它的圖象與直線y=-x無(wú)交點(diǎn) | ||
| C. | 當(dāng)x<0時(shí),y的值隨x的增大而減小 | D. | 當(dāng)x>0時(shí),y的值隨x的增大而增大 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 20 | B. | 10 | C. | 25 | D. | 16 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{5}$ | B. | $\frac{19}{100}$ | C. | $\frac{1}{20}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com