欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.如圖,在正方形ABCD中,P為AB的中點(diǎn),BE⊥PD的延長(zhǎng)線于點(diǎn)E,連接AE,F(xiàn)A⊥AE交DP于點(diǎn)F,連接BF、FC.若AE=4,則FC=4$\sqrt{2}$.

分析 根據(jù)正方形的性質(zhì)可得AB=AD,再求出∠BAE=∠DAF,∠ABE=∠ADF,然后利用“角邊角”證明△ABE和△ADF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AE=AF,從而判斷出△AEF是等腰直角三角形,根據(jù)AE的長(zhǎng)度求出EF,過點(diǎn)A作AH⊥EF于H,連接BH,根據(jù)等腰直角三角形的性質(zhì)可得AH=EH=FH,利用“角邊角”證明△APH和△BPE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得BE=AH,然后求出△BEH是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得∠EHB=45°,然后求出∠AHB=∠FHB,再利用“邊角邊”證明△ABH和△FBH全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AB=BF,再根據(jù)全等三角形對(duì)應(yīng)邊相等求出BE=DF,全等三角形對(duì)應(yīng)角相等求出∠BAH=∠BFE,然后求出∠BFE=∠ADF,根據(jù)等角的余角相等求出∠EBF=∠FDC,再利用“邊角邊”證明△BEF和△DFC全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得FC=EF.

解答 解:連接FC,
在正方形ABCD中,AB=AD,∠BAD=90°,
∵FA⊥AE,
∴∠EAF=90°,
∴∠BAE=∠DAF,
∵∠ABE+∠BPE=∠ADF+∠APD=90°,
∴∠ABE=∠ADF,
在△ABE和△ADF中,
$\left\{\begin{array}{l}{∠BAE=∠DAF}\\{AB=AD}\\{∠ABE=∠ADF}\end{array}\right.$,
∴△ABE≌△ADF(ASA),
∴AE=AF,BE=DF,
∵FA⊥AE,
∴△AEF是等腰直角三角形,
∴EF=$\sqrt{2}$AE=4$\sqrt{2}$,
過點(diǎn)A作AH⊥EF于H,連接BH,
則AH=EH=FH,
∵P為AB的中點(diǎn),
∴AP=BP,
在△APH和△BPE中,
$\left\{\begin{array}{l}{∠APH=∠BPE}\\{∠AHP=∠BEP=90°}\\{AP=BP}\end{array}\right.$,
∴△APH≌△BPE(AAS),
∴BE=AH,
∴BE=EH,
∴△BEH是等腰直角三角形,
∴∠EHB=45°,
∴∠AHB=∠FHB=135°,
在△ABH和△FBH中,
$\left\{\begin{array}{l}{AH=FH}\\{∠AHB=∠FHB}\\{BH=BH}\end{array}\right.$,
∴△ABH≌△FBH(SAS),
∴AB=BF,∠BAH=∠BFH,
∵AB=CD,
∴BF=CD,
∵∠BFH=∠BAH=∠PBE=∠ADF,
∴∠EBF=∠DAH=∠FDC,
在△BEF和△DFC中,
$\left\{\begin{array}{l}{EB=DF}\\{∠EBF=∠FDC}\\{BF=CD}\end{array}\right.$,
∴△BEF≌△DFC(SAS),
∴FC=EF=4$\sqrt{2}$.
故答案為:4$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),等角的余角相等的性質(zhì),難點(diǎn)在于作輔助線構(gòu)造出全等三角形與等腰直角三角形并多次證明三角形全等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.如圖1,△ABC內(nèi)接于⊙O,∠BAC的平分線交⊙O于點(diǎn)D,交BC于點(diǎn)E(BE>EC),且BD=2$\sqrt{3}$.過點(diǎn)D作DF∥BC,交AB的延長(zhǎng)線于點(diǎn)F.
(1)求證:DF為⊙O的切線;
(2)若∠BAC=60°,DE=$\sqrt{7}$,求圖中陰影部分的面積;
(3)若$\frac{AB}{AC}$=$\frac{4}{3}$,DF+BF=8,如圖2,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.因式分解:a3b-ab3+a2+b2+1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.已知|x-m|+(3x-y+m-2)2=0,則當(dāng)m為何值時(shí),x≥0,y≤2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.若m+$\frac{1}{m}$=$\sqrt{5}$,則非負(fù)數(shù)m-$\frac{1}{m}$的平方根是( 。
A.±2B.±1C.1D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.菱形ABCD中,點(diǎn)P為對(duì)角線BD上一動(dòng)點(diǎn),PE⊥AB于E,PF⊥AD于F,求證:PE+PF為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

16.|a-5|=4的幾何意義:在數(shù)軸上表示a的點(diǎn)與表示5的點(diǎn)之間的距離為4,則a的值是1或9.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

13.下列各數(shù):-(-2),-|-2|,(-2)2,-22,(-2)3,-23,負(fù)數(shù)個(gè)數(shù)為(  )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.不等式組$\left\{\begin{array}{l}{x≤2}\\{x<-1}\end{array}\right.$的解集在數(shù)軸上表示為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案