分析 先根據(jù)AB⊥BC得出∠B=90°,再由△ABE≌△ECD可知∠A=∠DEC,∠AEB=∠EDC,∠B=∠C=90°,由∠A+∠AEB=90°,∠DEC+∠D=90°可知∠AEB+∠DEC=90°,故∠AED=90°,由此可得出結(jié)論.
解答 解:AE⊥DE.
∵AB⊥BC,
∴∠B=90°.
∵△ABE≌△ECD,
∴∠A=∠DEC,∠AEB=∠EDC,∠B=∠C=90°.
∵∠A+∠AEB=90°,∠DEC+∠D=90°,
∴∠AEB+∠DEC=90°,
∴∠AED=90°,即AE⊥DE.
點(diǎn)評(píng) 本題考查的是全等三角形的性質(zhì),熟知全等三角形的對(duì)應(yīng)角相等是解答此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 有兩個(gè)根,為x=±$\sqrt{n}$ | B. | 當(dāng)n≥0時(shí),有兩個(gè)解,為x=±$\sqrt{n}$-m | ||
| C. | 當(dāng)n≥0時(shí),有兩個(gè)解,為x=±$\sqrt{n-m}$ | D. | 當(dāng)n≤0時(shí),無實(shí)數(shù)解 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com