分析 (1)結(jié)論:AG2=GE2+GF2.只要證明GA=GC,四邊形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可證明;
(2)過(guò)點(diǎn)A作AH⊥BG,在Rt△ABH、Rt△AHG中,求出AH、HG即可解決問(wèn)題.
解答 解:(1)結(jié)論:AG2=GE2+GF2.
理由:連接CG.
∵四邊形ABCD是正方形,
∴A、C關(guān)于對(duì)角線BD對(duì)稱,
∵點(diǎn)G在BD上,
∴GA=GC,
∵GE⊥DC于點(diǎn)E,GF⊥BC于點(diǎn)F,
∴∠GEC=∠ECF=∠CFG=90°,
∴四邊形EGFC是矩形,
∴CF=GE,
在Rt△GFC中,∵CG2=GF2+CF2,![]()
∴AG2=GF2+GE2.
(2)過(guò)點(diǎn)A作AH⊥BG,
∵四邊形ABCD是正方形,
∴∠ABD=∠GBF=45°,
∵GF⊥BC,
∴∠BGF=45°,
∵∠AGF=105°,
∴∠AGB=∠AGF-∠BGF=105°-45°=60°,
在Rt△ABH中,∵AB=1,
∴AH=BH=$\frac{\sqrt{2}}{2}$,
在Rt△AGH中,∵AH=$\frac{\sqrt{2}}{2}$,∠GAH=30°,
∴HG=AH•tan30°=$\frac{\sqrt{6}}{6}$,
∴BG=BH+HG=$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{6}}{6}$.
點(diǎn)評(píng) 本題考查正方形的性質(zhì)、矩形的判定和性質(zhì)、勾股定理直角三角形30度的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問(wèn)題,屬于中考常考題型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 120° | B. | 30° | C. | 40° | D. | 60° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0 | B. | 0.5 | C. | 1 | D. | 2 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com