分析 (1)利用材料中所給的方法求解即可;
(2)利用分母有理化的方法求解,注意消項(xiàng).
解答 解:(1)$\frac{1}{\sqrt{6}+\sqrt{5}}$=$\frac{\sqrt{6}-\sqrt{5}}{(\sqrt{6}+\sqrt{5})(\sqrt{6}-\sqrt{5})}$=$\frac{\sqrt{6}-\sqrt{5}}{(\sqrt{6})^{2}-(\sqrt{5})^{2}}$=$\sqrt{6}$-$\sqrt{5}$;
$\frac{2}{\sqrt{7}-\sqrt{5}}$=$\frac{2(\sqrt{7}+\sqrt{5})}{(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})}$=$\frac{2(\sqrt{7}+\sqrt{5})}{(\sqrt{7})^{2}-(\sqrt{5})^{2}}$=$\sqrt{7}$-$\sqrt{5}$;
$\frac{1}{\sqrt{n+1}+\sqrt{n}}$=$\frac{\sqrt{n+1}-\sqrt{n}}{(\sqrt{n+1}+\sqrt{n})(\sqrt{n-1}-\sqrt{n})}$=$\frac{\sqrt{n+1}-\sqrt{n}}{(\sqrt{n+1})^{2}-(\sqrt{n})^{2}}$=$\sqrt{n+1}$-$\sqrt{n}$;
故答案是:$\sqrt{6}$-$\sqrt{5}$;$\sqrt{7}$-$\sqrt{5}$;$\sqrt{n+1}$-$\sqrt{n}$;
(2)$\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{\sqrt{4}+\sqrt{3}}$+…+$\frac{1}{\sqrt{289}+\sqrt{288}}$
=$\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+$\sqrt{4}$-$\sqrt{3}$+…+$\sqrt{289}$-$\sqrt{288}$
=-1+$\sqrt{289}$
=-1+17
=16.
點(diǎn)評(píng) 本題主要考查了分母有理化,根據(jù)二次根式的乘除法法則進(jìn)行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特點(diǎn)的式子.即一項(xiàng)符號(hào)和絕對(duì)值相同,另一項(xiàng)符號(hào)相反絕對(duì)值相同.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ($\frac{5}{3}$a+b)元 | B. | (a+$\frac{5}{3}$b)元 | C. | $\frac{5}{3}$(a+b)元 | D. | (a+$\frac{5}{3}$b)元 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com