分析 (1)首先根據(jù)前四個(gè)等式的特征,可得第n個(gè)等式的分子是n+2,分母是n(n+1)•2n+1;然后判斷出后面算式的兩個(gè)數(shù)的分子都是1,第一個(gè)數(shù)的分母是n•2n,第二個(gè)數(shù)的分母是(n+1)•2n+1,據(jù)此解答即可.
(2)根據(jù)題意,把前2014個(gè)等式左右兩邊分別相加,求出a1+a2+a3+…a2014的值是多少即可.
解答 解:(1)根據(jù)分析,可得
用含n的代數(shù)式表示第n個(gè)等式:an=$\frac{n+2}{n(n+1){•2}^{n+1}}$=$\frac{1}{n{•2}^{n}}-\frac{1}{(n+1){•2}^{n+1}}$;
(2)a1+a2+a3+…a2014
=$\frac{1}{1×2}$-$\frac{1}{2×{2}^{2}}$+$\frac{1}{2{×2}^{2}}$-$\frac{1}{3{×2}^{3}}$+$\frac{1}{3{×2}^{3}}$-$\frac{1}{4{×2}^{4}}$+…+$\frac{1}{2014{×2}^{2014}}$-$\frac{1}{2015{×2}^{2015}}$
=$\frac{1}{2}-\frac{1}{2015{×2}^{2015}}$
故答案為:$\frac{n+2}{n(n+1){•2}^{n+1}}$;$\frac{1}{n{•2}^{n}}-\frac{1}{(n+1){•2}^{n+1}}$;$\frac{1}{2}-\frac{1}{2015{×2}^{2015}}$.
點(diǎn)評(píng) 此題主要考查了探尋數(shù)列規(guī)律問(wèn)題,注意觀察總結(jié)規(guī)律,并能正確的應(yīng)用規(guī)律,解答此題的關(guān)鍵是判斷出第n個(gè)等式的分子、分母的特征,并能用含n的代數(shù)式表示第n個(gè)等式.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x>0 | B. | 0<x<1 | C. | 1<x<2 | D. | x>2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
| 職工 | 甲 | 乙 |
| 月銷(xiāo)售件數(shù)(件) | 100 | 80 |
| 月工資(元) | 4500 | 4100 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2$\sqrt{2}$ | B. | 2 | C. | 4$\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 200米 | B. | 200$\sqrt{3}$米 | C. | 220$\sqrt{3}$米 | D. | $100(\sqrt{3}+1)$米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com