分析 由∠BAC=∠DAE根據(jù)等式的性質(zhì)就可以得出∠BAE=∠CAD,就可以得出△BAE≌△CAD,就可以得出結(jié)論.
解答 解:BE=CD.
理由:∵∠BAC=∠DAE,
∴∠BAC-∠EAC=∠DAE-∠EAC,
∴∠BAE=∠CAD.
在△BAE和△CAD中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAE=∠CAD}\\{AD=AE}\end{array}\right.$,
∴△BAE≌△CAD(SAS),
∴BE=CD.
點(diǎn)評(píng) 本題考查了等式的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,解答時(shí)證明三角形全等是關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -2<x<0或x>1 | B. | x<-2或x>1 | C. | x<-2或x>1 | D. | -2<x<1且x≠0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com