分析 (1)先證出∠CAF+∠ACF=60°,得出∠DFE=∠AFC=120°,證出∠ABC+∠DFE=180°,證出B、E、F、D四點(diǎn)共圓,得出$\widehat{FE}=\widehat{FD}$,即可得出FE=FD;
(2)在AC上截取AG=AE,連接GF,先證明△AGF≌△AEF,得出FG=FE,∠AFG=∠AFE=60°,再證明△CFG≌△CFD,得出CG=CD,即可得出結(jié)論.
解答 (1)解:FE=FD;理由如下:連接BF,如圖所示:
∵∠ABC=60°,∠ABC+∠BAC+∠BCA=180°,
∴∠BAC+∠BCA=120°,
∵AD、CE分別是∠BAC、∠BCA的平分線,
∴∠CAF=$\frac{1}{2}$∠BAC,∠ACF=$\frac{1}{2}$∠BCA,BF平分∠ABC,
∴∠CAF+∠ACF=$\frac{1}{2}$(∠BAC+∠BCA)=60°,∠ABF=∠CBF,
∴∠DFE=∠AFC=120°,∠DFC=∠AFE=60°,
∴∠ABC+∠DFE=180°,
∴B、E、F、D四點(diǎn)共圓,
∴$\widehat{FE}=\widehat{FD}$,
∴FE=FD;
(2)證明:在AC上截取AG=AE,連接GF,如圖所示:
在△AGF和△AEF中,
$\left\{\begin{array}{l}{AG=AE}&{\;}\\{∠GAF=∠EAF}&{\;}\\{AF=AF}&{\;}\end{array}\right.$,
∴△AGF≌△AEF(SAS),
∴FG=FE,∠AFG=∠AFE=60°,
∴FG=FD,∠GFC=120°-60°=60°,
在△CFG和△CFD中,
$\left\{\begin{array}{l}{FG=∠FD}&{\;}\\{∠GFC=∠DFC=60°}&{\;}\\{FC=FC}&{\;}\end{array}\right.$,
∴△CFG≌△CFD(SAS),
∴CG=CD,
∴AE+CD=AG+CG=AC.
點(diǎn)評(píng) 本題考查了全等三角形的判定與性質(zhì)、四點(diǎn)共圓、角平分線的定義、三角形內(nèi)角和定理、圓周角定理;本題有一定難度,需要通過作輔助線證明四點(diǎn)共圓和三角形全等才能得出結(jié)論.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 有兩個(gè)不相等的實(shí)數(shù)根 | B. | 有兩個(gè)相等的實(shí)數(shù)根 | ||
| C. | 有一個(gè)實(shí)數(shù)根 | D. | 沒有實(shí)數(shù)根 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com