分析 (1)根據(jù)正方形的性質(zhì)得到BC=DC,∠BCP=∠DCP=45°,證明△BCP≌△DCP;
(2)根據(jù)全等三角形的性質(zhì)得到∠CBP=∠CDP,根據(jù)等腰三角形的性質(zhì)得到∠CBP=∠E,證明∠DPE=∠DCE=90°,得到答案;
(3)根據(jù)菱形的性質(zhì)、仿照(2)的證明方法解答即可.
解答 (1)證明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,
在△BCP和△DCP中,
$\left\{\begin{array}{l}{BC=DC}\\{∠BCP=∠DCP}\\{PC=PC}\end{array}\right.$,
∴△BCP≌△DCP(SAS);
(2)證明:由(1)知,△BCP≌△DCP,
∴∠CBP=∠CDP,
∵PE=PB,
∴∠CBP=∠E,
∴∠DPE=∠DCE=90°,
∴∠DPE=∠ABC;
(3)解:在菱形ABCD中,BC=DC,∠BCP=∠DCP,
在△BCP和△DCP中,
$\left\{\begin{array}{l}{BC=DC}\\{∠BCP=∠DCP}\\{PC=PC}\end{array}\right.$,
∴△BCP≌△DCP(SAS),
∴∠CBP=∠CDP,
∵PE=PB,
∴∠CBP=∠E,
∴∠DPE=∠DCE,
∵AB∥CD,
∴∠DCE=∠ABC,
∴∠DPE=∠ABC=56°,
故答案為:56.
點(diǎn)評(píng) 本題考查的是正方形的性質(zhì)、菱形的性質(zhì)、全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理、正方形和菱形的性質(zhì)是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 平行四邊形 | B. | 矩形 | C. | 菱形 | D. | 正方形 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | y1>y2>0 | B. | y1>0>y2 | C. | 0>y1>y2 | D. | y2>0>y1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | 2 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 4a3-a2=3a | B. | a6÷a3=a2 | C. | a2•a3=a5 | D. | (-2a)2=-4a2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com