欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.已知關(guān)于x的方程x2-3x+k=0,問k取何值時,這個方程:
(1)有兩個不相等的實(shí)數(shù)根?
(2)有兩個相等的實(shí)數(shù)根?
(3)沒有實(shí)數(shù)根?

分析 (1)由方程有兩個不相等的實(shí)數(shù)根結(jié)合根的判別式即可得出關(guān)于k的一元一次不等式,解不等式即可得出結(jié)論;
(2)由方程有兩個相當(dāng)?shù)膶?shí)數(shù)根結(jié)合根的判別式即可得出關(guān)于k的一元一次方程,解方程即可得出結(jié)論;
(3)由方程沒有實(shí)數(shù)根結(jié)合根的判別式即可得出關(guān)于k的一元一次不等式,解不等式即可得出結(jié)論.

解答 解:(1)∵方程有兩個不相等的實(shí)數(shù)根,
∴△=(-3)2-4k>0,
解得:k<$\frac{9}{4}$.
(2)∵方程有兩個相等的實(shí)數(shù)根,
∴△=(-3)2-4k=0,
解得:k=$\frac{9}{4}$.
(3)∵方程沒有實(shí)數(shù)根,
∴△=(-3)2-4k<0,
解得:k>$\frac{9}{4}$.

點(diǎn)評 本題考查了根的判別式以及解一元一次不等式,根據(jù)方程解的情況結(jié)合根的判別式得出關(guān)于k的一元一次不等式(或一元一次方程)是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖,△ABC的3個頂點(diǎn)分別在小正方形的頂點(diǎn)(格點(diǎn))上,這樣的三角形叫做格點(diǎn)三角形,請在圖中再畫一個格點(diǎn)三角形DEF,使得△DEF≌△ABC,圖中最多能畫3個格點(diǎn)三角形與△ABC全等(不含△ABC).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.計算(后兩題用簡便方法計算)
(1)20+(-14)-(18)-13     
(2)(-$\frac{3}{7}$)+$\frac{5}{6}$-(-2$\frac{1}{7}$)+(-$\frac{5}{6}$)
(3)(-3.2)×$\frac{3}{10}$+(-6.8)×$\frac{3}{10}$
(4)(-81)÷$\frac{9}{4}$×$\frac{4}{9}$÷(-16)
(5)(-$\frac{1}{2}$+$\frac{2}{3}$-$\frac{1}{4}$)×(-24)
(6)-9$\frac{18}{19}$×5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.已知m與n互為相反數(shù),a,b互為倒數(shù),試求2(m+n)+(-ab)2015的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.計算
(1)12-(-18)+(-5)-15;
(2)-81÷$\frac{9}{4}$×(-$\frac{4}{9}$);
(3)1÷($\frac{1}{6}$-$\frac{1}{3}$)×$\frac{1}{2}$; 
 (4)-14-$\frac{1}{6}$×[2-(-3)2];
(5)-1.57×(-0.75)+0.57×(-$\frac{3}{4}$);
(6)1$\frac{1}{24}$-($\frac{3}{8}$+$\frac{1}{6}$-$\frac{3}{4}$)×24.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB=100°,∠BOC=α.以O(shè)C為一邊作等邊三角形OCD,連接AC、AD.
(1)求證:△ACD≌△BCO;
(2)當(dāng)α=150°時,試判斷△AOD的形狀,并說明理由;
(3)當(dāng)△AOD是等腰三角形時,求α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,AB=AC,AD是BC邊上的中線,點(diǎn)E是AC邊上一點(diǎn),且AE=$\frac{1}{3}$AC,連接BE.
(1)如圖1,連接DE,若∠ABC=60°,AC=12,求DE的長.
(2)如圖2,若點(diǎn)F是BE的中點(diǎn),連接AF并延長交BC于點(diǎn)G,求證:DC=2BG.
(3)如圖3,若∠BAC=90°,過點(diǎn)A作AN⊥BE交BE于點(diǎn)M,連接DM,請直接寫出DM與AB的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.化簡求值:-(3x-2y+z)-[5x-(x-2y+z)-3x],當(dāng)x=-2時的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖,已知平行四邊形ABCD及對角線BD,求作△BCD關(guān)于直線BD的對稱圖形(不要求寫作法).

查看答案和解析>>

同步練習(xí)冊答案