分析 (1)連接OA,因為點A在⊙O上,所以只要證明OA⊥AE即可;由同圓的半徑相等得:OA=OD,則∠ODA=∠OAD,根據(jù)角平分線可知:∠OAD=∠EDA,所以EC∥OA,由此得OA⊥AE,則AE是⊙O的切線;
(2)過點O作OF⊥CD,垂足為點F,證明四邊形AOFE是矩形,得OF=AE=4cm,由垂徑定理得:DF=3,根據(jù)勾股定理求半徑OD的長.
解答
(1)證明:連結(jié)OA,
∵OA=OD,
∴∠ODA=∠OAD,
∵DA平分∠BDE,
∴∠ODA=∠EDA,
∴∠OAD=∠EDA,
∴EC∥OA,
∵AE⊥CD,
∴OA⊥AE,![]()
∵點A在⊙O上,
∴AE是⊙O的切線;
(2)過點O作OF⊥CD,垂足為點F,
∵∠OAE=∠AED=∠OFD=90°,
∴四邊形AOFE是矩形,
∴OF=AE=4cm,
又∵OF⊥CD,
∴DF=$\frac{1}{2}$CD=3cm,
在Rt△ODF中,OD=$\sqrt{O{F^2}+D{F^2}}$=5cm,
即⊙O的半徑為5cm.
點評 本題考查了切線的判定和性質(zhì),在判定一條直線為圓的切線時,分兩種情況判定:①當已知條件中未明確指出直線和圓是否有公共點時,常過圓心作該直線的垂線段,證明該線段的長等于半徑即可,②當已知條件中明確指出直線與圓有公共點時,常連接過該公共點的半徑,證明該半徑垂直于這條直線,此題屬于第二種情況:連接OA,是半徑,證明垂直即可.
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com