欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

6.如圖,在矩形ABCD中,點(diǎn)P在邊CD上,且與C、D不重合,過(guò)點(diǎn)A作AP的垂線與CB的延長(zhǎng)線相交于點(diǎn)Q,連接PQ,M為PQ中點(diǎn).
(1)求證:△ADP∽△ABQ;
(2)若AD=10,AB=20,點(diǎn)P在邊CD上運(yùn)動(dòng),當(dāng)DP=8時(shí),求線段BM的長(zhǎng).

分析 (1)根據(jù)矩形的性質(zhì)得出∠D=∠ABC=90°,∠DAB=90°,求出∠QAB=∠DAP,∠ABQ=∠D,根據(jù)相似三角形的判定得出即可;
(2)作MN⊥QC,根據(jù)相似三角形的判定得出△MQN∽△PQC,根據(jù)相似三角形的性質(zhì)得出$\frac{MN}{PC}=\frac{QM}{QP}$,根據(jù)已知條件得到$\frac{MN}{PC}=\frac{1}{2}$,求得MN=$\frac{1}{2}$PC=$\frac{1}{2}$(20-8)=6,QN=$\frac{1}{2}$QC=$\frac{1}{2}$(QB+10),根據(jù)相似三角形的性質(zhì)得到$\frac{AD}{AB}=\frac{DP}{BQ}$,求出BQ=16,根據(jù)勾股定理即可得到結(jié)論.

解答 (1)證明:∵四邊形ABCD是矩形,
∴∠D=∠ABC=90°,∠DAB=90°,
∴∠ABQ=90°=∠D,
∵AQ⊥AP,
∴∠QAP=∠DAB=90°,
∴∠DAP=∠QAB=90°-∠BAP,
即∠QAB=∠DAP,∠ABQ=∠D,
∴△ADP∽△ABQ;

(2)解:作MN⊥QC,則∠QNM=∠QCD=90°,
又∵∠MQN=∠PQC
∴△MQN∽△PQC,
∴$\frac{MN}{PC}=\frac{QM}{QP}$,
∵∠C=∠MNQ=90°,
∴MN∥PC,
∵M(jìn)為PQ的中點(diǎn),
∴N為CQ的中點(diǎn),
∴$\frac{MN}{PC}=\frac{1}{2}$,
又∵PC=DC-DP=20-8=12,
∴MN=$\frac{1}{2}$PC=6,QN=$\frac{1}{2}$QC=$\frac{1}{2}$(QB+10),
∵△ADP∽△ABQ
∴$\frac{AD}{AB}=\frac{DP}{BQ}$,
∴$\frac{10}{20}=\frac{8}{BQ}$,
∴BQ=16,
∵QN=$\frac{1}{2}$QC=13,
∴BN=QB-QN=3,
在Rt△MBN中,由勾股定理得:BM2=MN2+BN2=45,
∴BM=3$\sqrt{5}$.

點(diǎn)評(píng) 本題考查了矩形的性質(zhì),相似三角形的性質(zhì)和判定,勾股定理的應(yīng)用,能綜合運(yùn)用定理進(jìn)行推理和計(jì)算是解此題的關(guān)鍵,題目比較好,難度偏大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在正方形ABCD中,點(diǎn)H在對(duì)角線BD上(與點(diǎn)B、D不重合),連接AH,將HA繞點(diǎn)H順時(shí)針旋轉(zhuǎn)90°與邊CD(或CD延長(zhǎng)線)交于點(diǎn)P,作HQ⊥BD交射線DC于點(diǎn)Q.
(1)如圖1:
①依題意補(bǔ)全圖1;
②判斷DP與CQ的數(shù)量關(guān)系并加以證明;
(2)若正方形ABCD的邊長(zhǎng)為$\sqrt{3}$,當(dāng) DP=1時(shí),試求∠PHQ的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對(duì)應(yīng)值如表:
x-100.52
y-123.752
①ac<0;
②當(dāng)x>1時(shí),y的值隨x值的增大而減。
③x=2是方程ax2+(b-1)x+c=0的一個(gè)根;
④當(dāng)-1<x<2時(shí),ax2+(b-1)x+c>0.
上述結(jié)論中正確的有( 。﹤(gè).
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.九年級(jí)(3)班共有50名同學(xué),如圖是該班一次體育模擬測(cè)試成績(jī)的頻數(shù)分布直方圖(滿分為30分,成績(jī)均為整數(shù)).若將不低于23分的成績(jī)?cè)u(píng)為合格,則該班此次成績(jī)達(dá)到合格的同學(xué)占全班人數(shù)的百分比是(  )
A.80%B.70%C.92%D.86%

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,直線y=2x+2與y軸交于A點(diǎn),與反比例函數(shù)y=$\frac{k}{x}$(x>0)的圖象交于點(diǎn)M,過(guò)M作MH⊥x軸于點(diǎn)H,且tan∠AHO=2.
(1)求k的值;
(2)在y軸上是否存在點(diǎn)P,使以點(diǎn)P、A、H、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,直接寫(xiě)出P點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
(3)點(diǎn)N(a,1)是反比例函數(shù)y=$\frac{k}{x}$(x>0)圖象上的點(diǎn),在x軸上有一點(diǎn)P,使得PM+PN最小,請(qǐng)求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

11.AB是⊙O的直徑,且AB=2,OC⊥AB,垂足為點(diǎn)O,弧AD:弧DC=2:1,在OC上有一動(dòng)點(diǎn)P,則PA+PD的最小值為$\sqrt{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)(2,3),與y軸交于點(diǎn)B(0,4),與x軸交于點(diǎn)A.
(1)求一次函數(shù)的解析式;
(2)求方程kx+b=0的解;
(3)求該函數(shù)圖象與兩坐標(biāo)軸圍成三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在平行四邊形ABCD中,點(diǎn)E在AD邊上,連接BE、CE,EB平分∠AEC
(1)如圖1,判斷△BCE的形狀,并說(shuō)明理由;
(2)如圖2,若∠A=90°,BC=5,AE=1,求線段BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖1是手機(jī)放在手機(jī)支架上,其側(cè)面示意圖如圖2所示,AB,CD是長(zhǎng)度不變的活動(dòng)片,一端A固定在0A上,另一端B可在0C上變動(dòng)位置,若將AB變到AB′的位置,則0C旋轉(zhuǎn)一定角度到達(dá)0C′的位置.已知0A=8cm,AB⊥0C,∠B0A=60°,sin∠B′A0=$\frac{9}{10}$,則點(diǎn)B′到0A的距離為( 。
A.$\frac{9\sqrt{3}}{10}$cmB.$\frac{18\sqrt{3}}{10}$cmC.$\frac{9\sqrt{3}}{5}$cmD.$\frac{18\sqrt{3}}{5}$cm

查看答案和解析>>

同步練習(xí)冊(cè)答案