分析 (1)①由題意畫(huà)出圖形即可,②先由旋轉(zhuǎn)得出∠AHP=90°,然后判斷出∠QHP=AHD,再得出△QHP≌△DHA即可;
(2)分兩種情況計(jì)算,先由三角函數(shù)求出∠APD=60°,再求出∠APH=45°,最后得到∠PHQ=60°即可.
解答 解:(1)①依題意,補(bǔ)全圖形,如圖1所示,![]()
②DP=CQ,
∵HA繞點(diǎn)H順時(shí)針旋轉(zhuǎn)90°,與邊CD(或CD延長(zhǎng)線)相交于點(diǎn)P,
∴∠AHP=90°,
∴∠AHD+DHP=90°,
∵HQ⊥BD,
∴∠QHD=90°,
∴∠QHP+∠DHP=90°,
∴∠QHP=AHD,
∵四邊形ABCD為正方形,
∴∠CDB=∠ADB=45°,AD=CD,
∴∠Q=∠CDB=∠ADB=45°,
∴△QHP≌△DHA,
∴AD=QP,
∴QP=CD,
∴OP-PC=CD-PC,
∴CQ=PD;
(2)①如圖2,當(dāng)點(diǎn)P在邊CD上時(shí),連接AP,![]()
∵正方形的邊長(zhǎng)為$\sqrt{3}$,PD=1,∠ADP=90°,
∴tan∠APD=$\sqrt{3}$,
∴∠APD=60°,
∵HA=HP,∠AHP=90°,
∴∠APH=45°,
∴∠HPD=∠APH+∠APD=105°,
∵∠Q=45°,
∴∠PHQ=60°,
②如圖3,當(dāng)點(diǎn)P在邊CD的延長(zhǎng)線時(shí),連接AP,![]()
∴∠HPD=∠APD-∠APH=15°,
∵∠HQD=45°,
∴∠PHQ=120°,
∴∠PHQ的度數(shù)為120°或60°.
點(diǎn)評(píng) 此題是四邊形綜合題,主要考查了正方形的性質(zhì)和旋轉(zhuǎn)的特征,全等三角形的判定和性質(zhì),同角或等角的余角相等,判斷△QHP≌△DHA是解本題的關(guān)鍵,分兩種情況是解本題的難點(diǎn).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x6÷x2=x3 | B. | 2x-2=$\frac{1}{2{x}^{2}}$ | C. | $\sqrt{18}$×$\sqrt{2}$=6 | D. | (a-2)2=a2-2a+4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x3•x3=2x3 | B. | 4${\;}^{-2}=\frac{1}{16}$ | C. | $\sqrt{9}=±3$ | D. | (x3)2=x5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ①② | B. | ①②③ | C. | ①②③④ | D. | ②③④ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com