| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
分析 如右圖所示,連接OD、OE,根據(jù)切線的性質(zhì)得到∠ODC=∠OEC=90°,OE=OD,據(jù)等腰直角三角形的性質(zhì)得到∠C=90°,∠A=45°,得到四邊形DCEO是正方形,求得OD=AD=$\frac{1}{2}$AC=1,于是得到HG=2OD=2;故①正確;求得∠EOB=45°,得到∠ODG=135°,得到∠OGD=∠ODG=22.5°,根據(jù)等腰三角形的性質(zhì)得到BG=BF,故②正確;根據(jù)角平分線的判定定理得到O在∠ACB的角平分線上,根據(jù)等腰三角形的性質(zhì)得到O是AB中點(diǎn),求得AD=CD=OD=OE=1,得到OG=1,根據(jù)勾股定理得到AB=$\sqrt{2}$AC=2$\sqrt{2}$,于是得到AH=BG=$\sqrt{2}$-1,故③正確;CF=2+BF=$\sqrt{2}$+1.故④正確.
解答
解:如右圖所示,連接OD、OE,
∵⊙O與AC、BC切于點(diǎn)D、E,
∴∠ODC=∠OEC=90°,OE=OD,
又∵△ABC是等腰直角三角形,
∴∠C=90°,∠A=45°,
∴四邊形DCEO是正方形,
∴OD∥BC,OE=OD,OD⊥AC,
△ADO是等腰直角三角形,
∴OD=AD=$\frac{1}{2}$AC=1,
∴HG=2OD=2;故①正確;
∵AC=BC,∴∠A=∠ABC=45°,
∴∠EOB=45°,
∴∠ODG=135°,
∵OD=OG,
∴∠OGD=∠ODG=22.5°,
∴∠BGF=22.5°,
∵∠BGF+∠F=∠ABC=45°,
∴∠F=22.5°,
∴BG=BF,故②正確;
∵OE=OD,
∴O在∠ACB的角平分線上,
∴O是AB中點(diǎn),
∴AD=CD,
又∵AC=2,
∴AD=CD=OD=OE=1,
∴OG=1,
又∵AB=$\sqrt{2}$AC=2$\sqrt{2}$,
∴OB=$\sqrt{2}$,
∴BG=OB-OG=$\sqrt{2}$-1,
同理AH=BG=$\sqrt{2}$-1,故③正確;
∴CF=2+BF=$\sqrt{2}$+1.故④正確.
故選D.
點(diǎn)評(píng) 本題考查了正方形的判定和性質(zhì)、勾股定理、等腰直角三角形的性質(zhì)、切線的性質(zhì).解題的關(guān)鍵是構(gòu)造正方形DCEO.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com