分析 如圖,作EH⊥BC于H.設(shè)AE=x,則易知ED=ED′=BD′,設(shè)ED=BDED′=y,在Rt△EHD′中,y2=22+(y-x)2,可得y=$\frac{4+{x}^{2}}{2x}$=$\frac{2}{x}$+$\frac{1}{2}$x,
∴AD=x+y=$\frac{3}{2}$x+$\frac{2}{x}$≥2$\sqrt{\frac{3}{2}x•\frac{2}{x}}$由此即可解決問題.
解答 解:
如圖,作EH⊥BC于H.設(shè)AE=x,則易知ED=ED′=BD′,設(shè)ED=BDED′=y,
在Rt△EHD′中,y2=22+(y-x)2,
∴y=$\frac{4+{x}^{2}}{2x}$=$\frac{2}{x}$+$\frac{1}{2}$x,
∴AD=x+y=$\frac{3}{2}$x+$\frac{2}{x}$≥2$\sqrt{\frac{3}{2}x•\frac{2}{x}}$,(a+b≥2$\sqrt{ab}$,a>0,b>0)
∴AD≥2$\sqrt{3}$,
∴AD的最小值為2$\sqrt{3}$.
點(diǎn)評 本題考查翻折變換、勾股定理、矩形的性質(zhì)、不等式的性質(zhì)等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,學(xué)會利用參數(shù)解決問題,記住a+b≥2$\sqrt{ab}$,a>0,b>0,這個基本不等式.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com