分析 (1)由已知條件可證得△ADC∽△ACB,得出D=∠4,再由已知條件和三角形內(nèi)角和定理得出∠1+2∠1=180°,求出∠1=60°,即可得出∠DAB的度數(shù);
(2)由已知得出∠DAC=∠CAB=30°,由三角形內(nèi)角和定理得出∠D+∠ACD=150°,由∠BCD=∠ACD+∠ACB=150°,得出∠D=∠ACB,證明△ADC∽△ACB.得出對(duì)應(yīng)邊成比例,得出AC2=AB•AD,即可得出結(jié)論;
(3)由已知得出AC2=AB•AD,∠DAC=∠CAB,證出△ADC∽△ACB,得出∠D=∠ACB=90°,由勾股定理求出AB,即可得出AD的長(zhǎng).
解答 (1)解:如圖所示:![]()
∵AC平分∠DAB,
∴∠1=∠2,
∵AC2=AB•AD,
∴AD:AC=AC:AB,
∴△ADC∽△ACB,
∴∠D=∠4,
∵∠DCB=∠DAB,
∴∠DCB=∠3+∠4=2∠1,
∵∠1+∠D+∠4=180°,
∴∠1+2∠1=180°,
解得:∠1=60°,
∴∠DAB=120°;
故答案為:120;
(2)證明:∵∠DAB=60°,AC平分∠DAB,
∴∠DAC=∠CAB=30°,
∴∠D+∠ACD=180°-30°=150°,
∵∠BCD=∠ACD+∠ACB=150°,
∴∠D=∠ACB,
∴△ADC∽△ACB.
∴AD:AC=AC:AB,
∴AC2=AB•AD,
∴四邊形ABCD為“可分四邊形”;
(3)解:∵四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,
∴AC2=AB•AD,∠DAC=∠CAB,
∴AD:AC=AC:AB,
∴△ADC∽△ACB,
∴∠D=∠ACB=90°,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$,
∴AD=$\frac{A{C}^{2}}{AB}$=$\frac{{4}^{2}}{2\sqrt{5}}$=$\frac{8\sqrt{5}}{5}$.
點(diǎn)評(píng) 此題是相似形綜合題目,考查了相似三角形的判定與性質(zhì)、三角形內(nèi)角和定理、勾股定理、新定義四邊形等知識(shí);熟練掌握新定義四邊形,證明三角形相似是解決問(wèn)題的關(guān)鍵,
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a=2,b=-1 | B. | a=-4,b=3 | C. | a=1,b=-7 | D. | a=-7,b=5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3 | B. | -3 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com