| A. | 45° | B. | 60° | C. | 70° | D. | 75° |
分析 首先證明△AED≌△CED,即可證明∠ECD=∠DAE=25°,從而求得∠BEC,再根據(jù)三角形內(nèi)角和定理即可求解.
解答 解:在△AED和△CED中,
$\left\{\begin{array}{l}{AD=CD}\\{∠ADE=∠CDE}\\{DE=DE}\end{array}\right.$,
∴△AED≌△CED,
∴∠ECD=∠DAE=25°,
又∵在△DEC中,∠CDE=45°,
∴∠CED=180°-25°-45°=110°,
∴∠BEC=180°-110°=70°.
故選:C.
點(diǎn)評 此題主要考查了正方形的性質(zhì),正確理解,證明△AED≌△CED是解題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | m=-3,n=1 | B. | m=3,n=-1 | C. | m=3,n=1 | D. | m=2,n=1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | k>-1 | B. | k>-1且k≠0 | C. | k<1 | D. | k<1且k≠0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -22÷(-2)2=1 | B. | ${({-2\frac{1}{3}})^3}=-8\frac{1}{27}$ | C. | $-5÷\frac{1}{3}×\frac{3}{5}=-25$ | D. | -32+(-3)2=0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 873名 | B. | 1115名 | C. | 485名 | D. | 1067名 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com