分析 作PD⊥OB于D,根據(jù)角平分線的性質(zhì)就可以得出PC=PD,根據(jù)HL可以判斷△PCO≌PDO,從而可得OC=OD,然后根據(jù)AAS就可以得出△ACP≌△BDP,從而得到AC=BD,進而得出AO+OB=2OC=8.
解答 證明:作PD⊥OB于D.
∴∠PDO=90°.
∵P為∠AOB的平分線OP上一點,PC⊥OA
∴PC=PD.∠PCA=90°.
∴∠PCA=∠PDO.
在Rt△PCO和RtPDO中,
$\left\{\begin{array}{l}{PO=PO}\\{PC=PD}\end{array}\right.$,![]()
∴Rt△PCO≌RtPDO(HL),
∴OC=OD.
∵∠OBP+∠DBP=180°,且∠0AP+∠0BP=180°,
∴∠OAP=∠DBP.
在△ACP和△BDP中,
$\left\{\begin{array}{l}{∠PCA=∠PDO}\\{∠OAP=∠DBP}\\{PC=PD}\end{array}\right.$,
∴△ACP≌△BDP(AAS),
∴AC=BD.
∵AO+BO=AC+CO+BO,
∴AO+BO=BD+BO+CO,
∴AO+BO=DO+CO,
∴AO+BO=2CO,
∵CO=4cm,
∴AO+B0=2×4=8cm.
點評 本題考查了角平分線的性質(zhì)的運用,直角三角形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,解答時證明三角形全等是關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com