| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
分析 作NF⊥AD,垂足為F,連接AE,NE,利用勾股定理的知識求出FM的長,根據(jù)圖形折疊前后圖形不發(fā)生大小變化可得出∠DAE=∠DAE,再證明△NFM≌△ADE,得到FM=DE,從而可求得EC的長.
解答 解:作NF⊥AD,垂足為F,連接AE,NE,![]()
在△FMN中,由勾股定理得:FM=$\sqrt{M{N}^{2}-F{N}^{2}}$=$\sqrt{1{3}^{2}-1{2}^{2}}$=5.
∵將正方形紙片ABCD折疊,使得點A落在邊CD上的E點,折痕為MN,
∴∠D=∠AHM=90°,∠DAE=∠DAE.
在△AHM和△ADE中,$\left\{\begin{array}{l}{∠D=∠AHM}\\{∠DAE=∠DAE}\end{array}\right.$,
∴△AHM∽△ADE.
∴∠AMN=∠AED.
在Rt△NFM和Rt△ADE中,$\left\{\begin{array}{l}{∠AMN=∠AED}\\{∠NFM=∠D}\\{AD=NF}\end{array}\right.$,
∴△NFM≌△ADE(AAS).
∴DE=FM=5cm.
∴EC=DC-DE=12-5=7.
故選:C.
點評 此題主要考查了圖形的翻折變換,根據(jù)圖形折疊前后圖形不發(fā)生大小變化得出三角形的全等是解決問題的關(guān)鍵,難度一般.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{5}{4}$ | B. | $\frac{5}{3}$ | C. | $\frac{20}{9}$ | D. | $\frac{12}{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | A | B. | B | C. | C | D. | D |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com