| A. | ①②④⑤ | B. | ①②③④⑤ | C. | ①②④ | D. | ①④ |
分析 過P作PG⊥AB于點(diǎn)G,根據(jù)正方形對(duì)角線的性質(zhì)及題中的已知條件,證明△AGP≌△FPE后即可證明①AP=EF;④∠PFE=∠BAP;在此基礎(chǔ)上,根據(jù)正方形的對(duì)角線平分對(duì)角的性質(zhì),在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,求得⑤DP=$\sqrt{2}$EC.
解答
證明:過P作PG⊥AB于點(diǎn)G,
∵點(diǎn)P是正方形ABCD的對(duì)角線BD上一點(diǎn),
∴GP=EP,
在△GPB中,∠GBP=45°,
∴∠GPB=45°,
∴GB=GP,
同理,得
PE=BE,
∵AB=BC=GF,
∴AG=AB-GB,F(xiàn)P=GF-GP=AB-GB,
∴AG=PF,
∴△AGP≌△FPE,
①∴AP=EF;
∠PFE=∠GAP
∴④∠PFE=∠BAP,
②延長AP到EF上于一點(diǎn)H,
∴∠PAG=∠PFH,
∵∠APG=∠FPH,
∴∠PHF=∠PGA=90°,即AP⊥EF;
③∵點(diǎn)P是正方形ABCD的對(duì)角線BD上任意一點(diǎn),∠ADP=45度,
∴當(dāng)∠PAD=45度或67.5度或90度時(shí),△APD是等腰三角形,
除此之外,△APD不是等腰三角形,故③錯(cuò)誤.
∵GF∥BC,
∴∠DPF=∠DBC,
又∵∠DPF=∠DBC=45°,
∴∠PDF=∠DPF=45°,
∴PF=EC,
∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,
∴⑤DP=$\sqrt{2}$EC.
∴其中正確結(jié)論的序號(hào)是①②④⑤.
故選A.
點(diǎn)評(píng) 本題考查了正方形的性質(zhì),全等三角形的判定及性質(zhì),垂直的判定,等腰三角形的性質(zhì),勾股定理的運(yùn)用.本題難度較大,綜合性較強(qiáng),在解答時(shí)要認(rèn)真審題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com